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A B S T R A C T

Background: Epidemiological studies typically use subjects' residential address to estimate individuals' air pol-
lution exposure. However, in reality this exposure is rarely static as people move from home to work/study
locations and commute during the day. Integrating mobility and time-activity data may reduce errors and biases,
thereby improving estimates of health risks.
Objectives: To incorporate land use regression with movement and building infiltration data to estimate time-
weighted air pollution exposures stratified by age, sex, and employment status for population subgroups in Hong
Kong.
Methods: A large population-representative survey (N=89,385) was used to characterize travel behavior, and
derive time-activity pattern for each subject. Infiltration factors calculated from indoor/outdoor monitoring
campaigns were used to estimate micro-environmental concentrations. We evaluated dynamic and static (re-
sidential location-only) exposures in a staged modeling approach to quantify effects of each component.
Results: Higher levels of exposures were found for working adults and students due to increased mobility.
Compared to subjects aged 65 or older, exposures to PM2.5, BC, and NO2 were 13%, 39% and 14% higher,
respectively for subjects aged below 18, and 3%, 18% and 11% higher, respectively for working adults.
Exposures of females were approximately 4% lower than those of males. Dynamic exposures were around 20%
lower than ambient exposures at residential addresses.
Conclusions: The incorporation of infiltration and mobility increased heterogeneity in population exposure and
allowed identification of highly exposed groups. The use of ambient concentrations may lead to exposure
misclassification which introduces bias, resulting in lower effect estimates than ‘true’ exposures.

1. Introduction

Epidemiological studies assessing the health impacts of air pollution
typically use ambient concentrations of subjects' residential address as
individual exposure estimates (Künzli et al., 2000; Hoek et al., 2007,
2008; Brauer et al., 2008). However, the exposure to air pollutants is
unlikely to be static in reality, as people may be exposed to air pollution
at work, study and other locations and during commute. The pollutant
levels in microenvironments are influenced by the spatial and temporal
changes in ambient pollution, as well as infiltration rates of different
buildings (Allen et al., 2012). In addition, population studies rarely

account for subject's movement (Wilson et al., 2005). Since time-ac-
tivity patterns may differ significantly between population groups, this
may lead to variability in exposure within the population that is not
considered in estimates based on residential address. The inclusion of
mobility data allow dynamic exposure to air pollution to be assessed
which may help to avoid exposure misclassifications, and reduce errors
and biases in health analyses (Jerrett et al., 2005; Setton et al., 2011).

In studies assessing the long-term health effects of air pollution,
surrogates of personal exposure including fixed-site monitoring stations
(Oglesby et al., 2000; Monn, 2001) or modeled concentrations (Jerrett
et al., 2004) are often used to assign exposure estimates for large
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populations. Recently, land use regression (LUR) has been used ex-
tensively to model intra-urban pollutant spatial variability (Hoek et al.,
2008; Eeftens et al., 2012). However, the use of ambient concentra-
tions, even at the residential address, is unlikely to fully represent the
‘true’ exposure to air pollution. Evaluation studies have shown that
ambient concentrations at home locations were significantly different
than personal exposures of subjects (Oglesby et al., 2000; Wilson et al.,
2000; Payne-Sturges et al., 2003). The effects of mobility on air pol-
lution exposure are rarely accounted for in epidemiologic studies, as
LUR are static models which do not incorporate travel patterns.

The use of ambient concentrations as exposure estimates assume
subjects do not leave home, where in reality people may spend 8–10 h
per day at work or school locations with pollutant levels higher or lower
than at their home addresses. This difference becomes significant where
there is high pollutant spatial variability in the study area, with a
substantial proportion of the population (e.g. working adults) commute
from lower pollution outlying areas to highly polluted city centre. In
this case, the residence-based exposure estimate will be biased low,
directly affecting the strength and significance of relative risk estimates
with health outcomes.

Recent studies have used travel surveys (Saraswat et al., 2016),
activity-based simulations (Setton et al., 2008; Dhondt et al., 2012),
GPS or mobile-based tracking (Dons et al., 2011; de Nazelle et al.,
2013), travel smartcard (Smith et al., 2016) or cellular network data
(Dewulf et al., 2016) to derive dynamic exposure estimates. These ap-
proaches have facilitated detailed spatio-temporal analysis of in-
dividual travel behaviors. A number of studies found static estimates
underestimated exposure levels (Dhondt et al., 2012; de Nazelle et al.,
2013; Dewulf et al., 2016; Nyhan et al., 2016; Saraswat et al., 2016).
Simulations based on travel survey and air pollution modeling data
found integrating mobility can affect exposure estimates by as much as
30% (Marshall et al., 2006). When these were applied to epidemiologic
effect estimates, results indicated bias of effect estimates towards the
null when mobility is not considered (Setton et al., 2008). In addition,
epidemiological studies also assume subjects of different demographic
groups to have the same exposure. This may not be accurate as the time-
activity of population groups (e.g. between children/elderly and adults)
can be considerably different. The impact of mobility on exposure is
likely to be dependent on spatial heterogeneity of pollutant (Steinle
et al., 2013). The development of dynamic exposure models also allow
for scenario analysis to assess the impact of changes in transportation
patterns and land use on exposure.

To date, none of these approaches have been integrated with LUR to
assess dynamic air pollution exposure which can be applied to in-
vestigate of long-term health impacts of air pollution. The aim of this
work is to assimilate, characterize and integrate population movement
to create a dynamic LUR model layer for the population of Hong Kong
(HK). HK is a densely-populated city with significant air quality issues.
Using a population-representative travel survey, we incorporated po-
pulation mobility in LUR models to estimate dynamic time-weighted air
pollution exposure for different age, sex and employment groups. This
study evaluates the use of static ambient concentrations as exposure
estimates, and the effects of stratification of exposure to different po-
pulation groups of particulate matter (PM2.5), black carbon (BC), and
nitrogen dioxide (NO2).

2. Materials and methods

The method can be divided into three steps: (i) mobility data (i.e.
time, location, transport, purpose and duration of trips) were extracted
from a territory-wide travel characteristics survey for each subject; then
(ii) the microenvironment and time spent were classified and calculated
based on the extracted information; finally (iii) the time-activity in-
formation were matched with corresponding micro-environmental
concentrations to calculate time-weighted dynamic exposure. The
modeled outputs (i.e. time-weighted dynamic exposure) account for

crossing multiple locations, and can accurately determine the spatial
contrast in pollutant concentrations along the travel route. Detailed
maps of the study area are shown in Figs. S1 and S2, with the overall
process summarized in Fig. S3 (Supporting Information).

2.1. Population mobility data

We used a large population-representative survey to characterize
travel behavior and derive population movement patterns in HK. The
Travel Characteristics Survey (TCS) 2011 Survey (To et al., 2005;
Transport Department, 2014), published by the HK Transport Depart-
ment, polled 50,000 randomly chosen households, with each household
member providing detailed trip information, including: start & end lo-
cations; form of transport used; number of trips made; time and dura-
tion of journeys to place of work or study. In the main survey, trip
information and subject characteristics were collected on a weekday
(24 h; not a public holiday). The number of subjects totaled 101,385,
with self-reported mode, route and frequency of travel recorded during
the sample day. Individual data on age, sex and occupation were
available for each subject. In addition, we also used the HK 2011 Census
to validate results (Census and Statistics Department, 2012). The use of
a travel smartcard is widespread in HK, however these data were not
accessible for this study due to privacy and data protection concerns.

From the original number of subjects (N=101,385), we excluded
subjects who may not represent the general population travel patterns
or those who were not representative of study population of health
effect studies. We excluded subjects who: (1) were professional drivers;
(2) were mobile residents and domestic helpers; (3) had cross-boundary
trips and trips to airports during the period of the travel survey, as they
were assumed to travel outside the study area. After these exclusion
criteria were applied, the total number of subjects included in model
development was 89,385 (Table S1 in Supporting Information).

Next, we constructed time-activity patterns for each survey subject,
based on travel time, location and purpose of the trips made during the
day. We assembled population mobility information from the survey
data in detail, including movements between tertiary planning units
(TPUs) per hour of the day. TPUs are the smallest spatial administrative
units in HK (N=289, Fig. S2 in Supporting Information), devised for
population census and town planning purposes. The median population
size of a TPU was 21,450. Data from the 2011 Census was also available
at TPU level.

2.2. Air pollution data

Details of the PM2.5, BC, and NO2 LUR models have been described
in Lee et al. (2017). The models were developed from a comprehensive
monitoring campaign and predictor variables representing traffic, land
use and population. We ran a zonal statistics analysis to compute the
average pollutant concentrations for each TPU using ArcGIS (ESRI;
Version 9.0). There were four components to the air pollution exposure
estimates: (1) ambient concentrations for each TPU; (2) indoor micro-
environments; (3) transport microenvironments; and (4) diurnal profile
factors. We estimated pollutant concentrations in indoor micro-
environments with the use of infiltration efficiencies (Finf) derived from
seasonal field campaigns monitoring paired indoor/outdoor PM2.5 and
BC continuously over a seven-day period at 24 naturally ventilated
residences during 2016 and 2017. Finf is a unitless quantity defined as
the equilibrium concentration of outdoor pollution that penetrates in-
doors and remains suspended, and was calculated following Allen et al.
(2012). Indoor/outdoor (IO) relationships obtained from local studies
were used for NO2 (Lee et al., 1999; Lee and Chang, 2000). Air-con-
ditioning systems are used extensively in non-residential buildings in
HK, therefore different infiltration efficiencies were used for indoor
microenvironments with natural ventilation or with the use of me-
chanical ventilation and air conditioning (MVAC) systems. For trans-
port microenvironments, we re-classified modes of travel in the travel
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