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a b s t r a c t

Due to time- and expense- consuming of conventional indoor PM2.5 (particulate matter with aero-
dynamic diameter of less than 2.5 mm) sampling, the sample size in previous studies was generally small,
which leaded to high heterogeneity in indoor PM2.5 exposure assessment. Based on 4403 indoor air
monitors in Beijing, this study evaluated indoor PM2.5 exposure from 15th March 2016 to 14th March
2017. Indoor PM2.5 concentration in Beijing was estimated to be 38.6± 18.4 mg/m3. Specifically, the
concentration in non-heating season was 34.9 ± 15.8 mg/m3, which was 24% lower than that in heating
season (46.1± 21.2 mg/m3). A significant correlation between indoor and ambient PM2.5 (p< 0.05) was
evident with an infiltration factor of 0.21, and the ambient PM2.5 contributed approximately 52% and 42%
to indoor PM2.5 for non-heating and heating seasons, respectively. Meanwhile, the mean indoor/outdoor
(I/O) ratio was estimated to be 0.73± 0.54. Finally, the adjusted PM2.5 exposure level integrating the
indoor and outdoor impact was calculated to be 46.8 ± 27.4 mg/m3, which was approximately 42% lower
than estimation only relied on ambient PM2.5 concentration. This study is the first attempt to employ big
data from commercial air monitors to evaluate indoor PM2.5 exposure and risk in Beijing, which may be
instrumental to indoor PM2.5 pollution control.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Human exposure to Particulate Matter (PM), is a major public
health concern. In 2015, more than 4 million premature deaths
worldwide were attributed to ambient air pollution, which made it
the fifth leading global public health risk factor for humans (Cohen
et al., 2017). Mounting publications have indicated that smaller
particles may result in stronger health hazards, since they can get
deep into lungs, bloodstream and other organs. Thus, the research
on exposure and risk raised by fine particles with a diameter of
2.5 mm (PM2.5) or less is growing. In China, approximately 1.36

million deaths have been caused by PM2.5 in 2010 (Lelieveld et al.,
2015). To date, most risk estimation for PM2.5 exposure has been
conducted by using ambient PM2.5 levels (Burnett et al., 2014).
However, since most people spent more than 80% of their time
indoors (Drew et al., 2010), calculation only riled on ambient PM2.5
concentrations may yield mis-estimation bias on the exposure and
risk raised by PM2.5.

Mounting studies have addressed indoor PM2.5 exposure in
recent years (Shao et al., 2017; Wang et al., 2016). In 2015, Huang
et al. reported indoor PM2.5 level in Beijing's non-heating season
was 4e193 mg/m3 with a median of 34 mg/m3 (n¼ 41), and indi-
cated the indoor PM2.5 level was significantly related to outdoor
PM2.5 level (R2> 0.9) (Huang et al., 2015). This indoor-outdoor
correlation was confirmed by another study, which also pointed
out PM2.5 level lagged behind its outdoor counterpart with a
75e115min delay (Han et al., 2015). Apart from outdoor PM2.5, the
impact of indoor human activities on indoor PM2.5 was also
determined. Emission rates from cooking (0.03 mg/min-2.78mg/
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min) and smoking (8e20 mg/cigarette, n¼ 8) were reported
(Klepeis et al., 2003), while air purifier can also significantly
decrease indoor PM2.5 (He et al., 2004). However, conventional
indoor PM2.5 sampling is time- and expense-consuming since it
involves household survey, which restricted sample size in most
studies (Chen and Zhao, 2011). Considering the indoor PM2.5 can be
influenced by quite a number of factors (such as outdoor PM2.5
levels, building types, ventilation, human activities and others), the
limitation of small sample size was usually resulted in inconsistent
conclusions amongst studies. For example, the indoor/outdoor (I/O)
PM2.5 ratio varied considerably with a wide range of 0.12e3.36
(Chen and Zhao, 2011). Also, the infiltration factor (the fraction of
ambient PM2.5 that can penetrate indoors and remain suspended)
was only 0.35 (n¼ 114) based on random component superposition
model (Meng et al., 2005), while the residential infiltration factor
was reported 77% higher (0.62± 0.21) in the Multi-Ethnic Study of
Atherosclerosis and Air Pollution (MESA AIR) study (Allen et al.,
2012). By regressing the indoor PM2.5 and outdoor PM2.5, the
contribution of outdoor PM2.5 to indoor PM2.5 was estimated from
54% to 96% (n¼ 90) (Ji and Zhao, 2015). Therefore, the heteroge-
neity in indoor PM2.5 exposure in large population is still high.

To address indoor PM2.5 exposure in a large-scale context, sci-
entists attempted to develop some mechanism models. For
example, many factors (such as the influence of filtration inter-
vention, energy efficiency, ventilation, stove use, presence and
operability of exhaust fans) were included in the CONTAM toolbox,
a multizone indoor air quality and ventilation analysis computer
program (Walton and Dols, 2006). This toolbox was designed to
determine the contaminant concentrations and personal exposure
indoors. Based on CONTAM, Fabin et al. compared simulated PM2.5
levels and their correlates with previous literature in Boston, which
illustrated that CONTAM simulation could be readily explained by
available parameters with an R2 of 0.89e0.98 (Fabian et al., 2012). A
similar study performed in London concluded the indoor PM2.5 in
detached or semi-detached properties (compared to flats and
apartments) is more easily influenced by outdoor pollution infil-
tration, due to their greater externally exposed surface area-to-
volume (Taylor et al., 2014). Nonetheless, these models require
quite a number of parameters for various buildings, which are al-
ways unavailable (Milner et al., 2011). In addition, most model
validations are conducted at low ambient PM2.5 levels (<10 mg/m3).
The model performance at high ambient PM2.5 remains uncertain,
which restricts model application in some highly polluted regions.

In recent years, given that concerns on PM2.5 pollution are
growing, people have increasingly purchased air monitors to
measure the level of indoor pollution, and these monitoring data
were commonly stored on a cloud server. The big data provides an
avenue to reduce heterogeneity in indoor PM2.5 exposure. Using
Beijing as case study, this study aims to address indoor PM2.5
exposure profile. Specifically, the objectives are to: 1) reveal spatial
and temporal differences of indoor PM2.5 concentrations; 2) esti-
mate the I/O ratio, infiltration factor and the outdoor contribution
to indoor PM2.5; and 3) calculate PM2.5 exposure and population
risk. To the best of our knowledge, this study is the first attempt to
integrate the data collected from thousands of air sensors into in-
door PM2.5 research, which may be informative to indoor PM2.5

pollution control.

2. Materials and methods

2.1. Population study

Beijing is well recognized as the capital of China and located in
the country's north-east region. The area of Beijing covers
16411.0 km2. In this study, 6 major districts, namely DongCheng,

XiCheng, HaiDian, ChaoYang, ShiJingShan and FengTai, were
selected as target areas. The 6 major districts contribute approxi-
mately 59% of the population in Beijing, which approached 22
million in 2015.

2.2. Indoor PM2.5 data

It should be noted indoor defined in this study specifically
means indoor buildings. Actually, exposure to indoor PM includes
also the exposure to polluted air inside various transportation
modes, like cars (Grana et al., 2017), buses (Yan et al., 2015) and
trains, where humans also spend significant time. However, to
determine the exposure in these indoor transportation modes is
not the scope of this study. The indoor PM2.5 levels in present study
were measured by Laser Egg, which is produced by Kaiterra com-
pany. As a real-time measurement equipment, the Laser Egg mea-
sures the PM2.5 concentration by using the Laser-based light
scattering technique. Briefly, the measurement principle is laser
based Mie scattering, and a laser with 650 nm wavelength is used.
Particles are pulled into the sensor by a fan, where they pass the
laser beam. The scattered light is detected by a photodiode placed
in a 90� angle to the beam. The peaks of the diffracted light are used
to count the particles. By analysing the intensity of the scattered
light, the particles' size and mass are estimated.

The products purchased by the residents lived in 6 urbans of
Beijing were selected as the candidate air monitors. Furthermore,
only air monitors with sufficient running time (average running
time> 8 h per day) were utilized. It should be noted the location of
each air monitor was identified by IP address, which was used to
transfer the local PM2.5 concentrations to the cloud server. The
PM2.5 levels measured from each sold equipment were recorded by
the Kaiterra App, and uploaded to the cloud server.

To protect individual privacy, location information was
encrypted by Geohash encode (Balki�c et al., 2012). Briefly, the
geographic location was encoded into a short string of letters and
digits. This short string is a hierarchical spatial data structure which
subdivides space into buckets of grid shape. The Geohash code was
encrypted at 5 km2 resolution in present study, and a thus 64
Geohash codes were generated as tabulated in Supplementary
Material (SM) Table S1. As shown in Fig. 1, a total of 4403 air
monitors were eligible to measure indoor PM2.5 levels in the target
areas. In particular, 2366 samplers were located in Chaoyang dis-
trict, followed by 518 in HaiDian, 827 in DongCheng, 366 in
XiCheng, 240 in ShiJingShan and 86 samplers in FengTai district.

2.3. Data quality

As a novel method to obtain indoor PM2.5 data, the data quality
is the first priority. During the period from 25th October, 2016 to
20th November 2016, four Laser Eggs (ID: 8ca9, 824b, 3c72 and
167e) were co-located with a Tapered Element Oscillating Micro-
balance (TEOM) at the Shanghai Qingpu Environmental monitoring
station. During the co-location, data from the Laser Eggs and the
TEOMwere collected. Fig. S1 shows the course of the raw Laser Egg
PM2.5 mass concentration and the TEOM PM2.5 mass concentration.
Although some deviations can be observed, all four measurements
follow the same trend.

Fig. S2 shows the correlation between the raw PM2.5 mass
concentration of the four co-located Laser Eggs and the TEOM
monitor. The results demonstrated the Laser Egg could be readily
measured the PM2.5. However, the slope was estimated with a
range of 1.02e1.25, which indicated that the Laser Eggs may over-
estimate PM2.5 levels. The reason is at high relative humidities (RH),
particles experience hygroscopic growth. If not controlled, optical
sensors will overestimate the particles mass, as the particle
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