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a b s t r a c t

Reliable detection and attribution of changes in nitrogen (N) runoff from croplands are essential for
designing efficient, sustainable N management strategies for future. Despite the recognition that excess N
runoff poses a risk of aquatic eutrophication, large-scale, spatially detailed N runoff trends and their
drivers remain poorly understood in China. Based on data comprising 535 site-years from 100 sites
across China's croplands, we developed a data-driven upscaling model and a new simplified attribution
approach to detect and attribute N runoff trends during the period of 1990e2012. Our results show that
N runoff has increased by 46% for rice paddy fields and 31% for upland areas since 1990. However, we
acknowledge that the upscaling model is subject to large uncertainties (20% and 40% as coefficient of
variation of N runoff, respectively). At national scale, increased fertilizer application was identified as the
most likely driver of the N runoff trend, while decreased irrigation levels offset to some extent the impact
of fertilization increases. In southern China, the increasing trend of upland N runoff can be attributed to
the growth in N runoff rates. Our results suggested that increased SOM led to the N runoff rate growth for
uplands, but led to a decline for rice paddy fields. In combination, these results imply that improving
management approaches for both N fertilizer use and irrigation is urgently required for mitigating
agricultural N runoff in China.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Meeting food security targets while simultaneously reducing
reactive nitrogen losses has drawn attention from both scientists
and the public (Chen et al., 2014; Mueller et al., 2012; Tilman et al.,
2011; Zhang et al., 2015). Large amounts of anthropogenic nitrogen
(N) inputs have resulted in excess N being lost in runoff from
croplands to water bodies and the atmosphere worldwide (Cui
et al., 2014; Leip et al., 2011; Seitzinger et al., 2010). As one of the
consequences, increased occurrences of aquatic eutrophication and

ecosystem degradation were observed, particularly in China and
South Asia (Paerl et al., 2014). Reliable detection and attribution of
cropland N runoff are crucial for policy makers and farmers to
develop site-specific Nmanagement strategies (Cherry et al., 2008).
Although cropland N runoff is substantial in China (e.g., 2.1 ± 0.2 or
0.8 Tg N yr�1 estimated by Gu et al. (2015) and Wang et al. (2014),
respectively), large-scale, spatially detailed N runoff trends and its
attribution remain poorly understood.

Cropland N runoff, defined as a generation process of N loss via
surface runoff, depends on environmental conditions and agricul-
tural management practices (Zhang et al., 2016). This complexity
makes large-scale N runoff difficult to estimate using empirical
models. Plot-scale N runoff flux data from croplands are also
difficult to scale up into spatially detailed maps because of spatio-
temporally varying results (Shen et al., 2012). Currently, an export
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coefficient approach has been widely used to estimate cropland N
runoff (Hao et al., 2006; Liu et al., 2010; Velthof et al., 2009; Wang
et al., 2014). For example, the first National Pollution Census Pro-
gram of China (NPCP) provided a collection of N runoff flux co-
efficients for different geographical regions in China, determined by
fitting cross-sectional site data to an export-coefficient model
(Wang et al., 2014). Nevertheless, substantial evidence gathered
from field observations indicates that linear and homogeneous
models are rarely capable of capturing the spatial variability of N
runoff at regional scale (Schaefer and Alber, 2007; Sobota et al.,
2009; Hou et al., 2016). This highlights the difficulty of accurately
predicting its future evolution as well as quantifying the impacts on
aquatic ecosystems.

While it is still challenging to attribute contributions of each
individual driving factor (e.g., climate condition, agricultural man-
agement practices) to the cropland N runoff trend assessment,
statistical correlation or regression analyses have been widely
applied (Korsaeth and Eltun, 2000; Stalnacke et al., 2015) over past
decades. However, this approach has two potential limitations.
Firstly, statistical analyses of historical RTN generally characterizes
the related major drivers, thus includes the signals not only from
the temporal trends, but also from inter-annual or decadal vari-
ability. Secondly, the use of statistical analysis generally assumes
that the effects of drivers on N runoff are linear and independent of
each other (Piao et al., 2015). However, a growing number of studies
based on both data from field experiments and theoretical analyses
indicated non-linear responses of N runoff to changes in driving
factors as a consequence of complex interactions (Hou et al., 2016).
Although these limitations in attribution analysis could be over-
come through the application of process-based models (Hao et al.,
2006; Abbaspour et al., 2015; Liu et al., 2016), core limitations of
such simulation models are the large uncertainties arising from
model structure and parameter choice. One way to separate the
contribution of natural and anthropogenic controls is to use the
Kaya Identity concept developed in economics (Raupach et al.,
2007), which is adopted when studying climate change and hy-
drological science (Streimikiene and Balezentis, 2016; Wang et al.,
2015b).

To quantify and attribute cropland N runoff trends during past
decades, we analyzed the data in this study is based on an upscaling
model following a new simple attribution approach. Synthesized
field measurements were used for model calibration and cross-
validation based on the Bayesian Recursive Regression Tree algo-
rithm version 2.0 (BRRT v2, Zhou et al., 2015), utilizing high-

resolution gridded datasets including climate conditions, soil at-
tributes, and agricultural management practices. First, we assessed
inter-annual dynamics of cropland N runoff derived from the data-
driven upscaling model to detect trends for the period from 1990 to
2012. Second, we compared the proportional change rate of each
driver to upscaling results of RTN, which allowed us to diagnose the
contributions of different drivers. Finally, we discussed how each
driver modulates the temporal trend of RTN and the implications for
site-specific N management.

2. Data and methodology

2.1. Dataset

Based on the National Pollution Census Program of China (NPCP)
and datasets published by the scientific community, in situ mea-
surements of N runoff and associated variables in each plot were
collated from 100 experimental sites for both rice paddy and up-
land fields (i.e., as a flooded parcel of arable land used for growing
rice and non-rice crops, respectively). Water samples were
collected in the drainage outlet for each rainfall event inmost of the
measurements, where the runoff volume was consecutively
measured within the observation period. N concentrations inwater
samples were analyzed using ultraviolet spectrophotometric
methods, following the Standard Methods for the Examination of
Water and Wastewater approach for China (SEPA, 2002). Precipi-
tation within the observation period and soil properties (0e20 cm
depth) at the beginning of the experiment were synchronously
monitored. Missing values of soil properties or climatic factors at a
few sites were supplemented with data from the China Soil Sci-
entific Database (http://vdb3.soil.csdb.cn/) based on the corre-
sponding soil type of the county or from the 0.1-degree China
Meteorological Forcing Dataset (CMFD) v0106 (http://data.cma.cn/)
depending on its geographic coordinates. Information on agricul-
tural management practices including N fertilizer application rate,
irrigation amount, fertilizer types, and crop types were recorded,
including the timing of the application. The dataset comprised 535
site-years data (293 for upland and 242 for rice paddy fields)
(Fig. 1a and Supplementary Data S1), and can be considered
representative of most major cropping areas except northwestern
China (Fig. 1).

2.2. Data-driven upscaling model

We developed an upscaling model which accounts for the ef-
fects of environmental conditions and agricultural management
(Eq. (1)). Specifically, N fertilizer application rate (Nrate) and envi-
ronmental conditions (xk) are directly included as independent
variables, whereas fertilizer application and crop types are
considered as correction terms in the model:

RTNl ¼ RRl(xk),Nrate þ R0l(xk)þε, cl ¼ 1,2,…,L, xk2Ul (1a)

where

RRl ¼ RRl
*(xk) � CEi(RR) � CEj(RR), (1b)

R0l ¼ Rl
0,*(xk) � CEj(R0), (1c)

RRl
*(xk) ¼ f(xk),Nrate þ g(xk), Rl0,*(xk) ¼ h(xk), (1d)

and i and j represent the index of fertilizer types and crop types,
respectively; l and L are the index and number of piecewise func-
tions. xk is climatic condition or soil attribute. Observations (Fig. S1)
of air temperature, water input and soil clay content can be used as

Acronyms and abbreviations

RTN Cropland N runoff
R0 Background N runoff
SOM Soil organic matter
TN Soil total nitrogen
Nrate Nitrogen (N) fertilizer application rate per unit

sowing area
xk Environmental variables
RR RTN per unit N fertilizer additions
pH Soil pH value
Clay Soil clay content
Temp Mean air temperature
W Sum of precipitation and irrigation within

observation period
CE Correction coefficient
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