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a b s t r a c t

Chemicals in consumer products have become the focus of recent regulatory developments including
California's Safer Consumer Products Act. However, quantifying the amount of chemicals released during
the use and post-use phases of consumer products is challenging, limiting the ability to understand their
impacts. Here we present a comprehensive framework, OrganoRelease, for estimating the release of
organic chemicals from the use and post-use of consumer products given limited information. First, a
novel Chemical Functional Use Classifier estimates functional uses based on chemical structure. Second,
the quantity of chemicals entering different product streams is estimated based on market share data of
the chemical functional uses. Third, chemical releases are estimated based on either chemical product
categories or functional uses by using the Specific Environmental Release Categories and EU Techno-
logical Guidance Documents. OrganoRelease connects 19 unique functional uses and 14 product cate-
gories across 4 data sources and provides multiple pathways for chemical release estimation. Available
user information can be incorporated in the framework at various stages. The Chemical Functional Use
Classifier achieved an average accuracy above 84% for nine functional uses, which enables the Organo-
Release to provide release estimates for the chemical, mostly using only the molecular structure. The
results can be can be used as input for methods estimating environmental fate and exposure.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Concern over health risks of chemicals in consumer products
has been increasing due to human exposure to chemicals released
both indoors and outdoors (Trudel et al., 2008, 2011; Zota et al.,
2014). Release of chemicals to the general environment from con-
sumer products is also a concern for the health of the ecosystem
especially for chemicals that are persistent and induce ecotoxicity,
such as perfluorinated compounds, flame retardants, and certain
antibiotics (Clarke and Smith, 2011; Ezechias et al., 2014; Janecko
et al., 2016; Kunhikrishnan et al., 2015; Ortiz de Garcia et al.,
2014; Rosal et al., 2010). As a result, chemicals contained in con-
sumer products have become the focus of recent regulatory de-
velopments including the Safer Consumer Products Act of

California, the Safe Chemical Act of the U.S., and the Registration,
Evaluation, Authorization and Restriction of Chemicals (REACH)
program of the European Union.

A major challenge to minimizing the human and ecological
health risk of chemicals in consumer products is the lack of avail-
able release information on the vast majority of chemicals and the
economical infeasibility of obtaining relevant information for all
chemicals through traditional experimental testing. To determine
release estimates of chemicals from consumer products, one must
first determine the plausible uses of a given chemical. Recently,
Phillips et al. (2017) proposed a methodology to screen out candi-
date chemical alternatives based on functional use similarities and
hazard information by combining quantitative structure-use rela-
tionship models and high-throughput toxicity screening. However,
to assess the human and ecological health risk chemicals may pose,
exposure as well as the fate and transport of the chemicals must be
characterized, which requires estimates of the amount of chemical
released from different products and applications. Traditional
exposure assessments have been done for chemicals in consumer
products (Aronson et al., 2007; Dann and Hontela, 2011; Goebel
et al., 2012; Kienhuis et al., 2015). However, these methods rely
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on measuring the concentrations of chemicals in different envi-
ronmental media, which would be cost prohibitive for evaluating
thousands of chemicals in consumer products. Fate and transport
models for both indoor and outdoor environments can be used to
estimate the concentrations of the chemicals of interest (Garner
et al., 2017; Hollander et al., 2016; Liagkouridis et al., 2015;
Rosenbaum et al., 2011). However, a vital input for these models
is the release information of the chemical(s) to different environ-
mental compartments during and after the use of products that
contain the chemical(s).

Holmgren et al. (2012) presented a generic emission model for
organic chemicals embedded in solid materials but this model is
rather mathematically complex with dozens of parameters for
each chemical, the shape of the consumer product, and the room
characteristics. A less complicated and parsimonious model was
recently developed for the release of volatile organic compounds
encapsulated in products (Huang and Jolliet, 2016) but is limited to
volatile organic compounds. Furthermore, both models (Holmgren
et al., 2012; Huang and Jolliet, 2016) provide release estimates
only for indoor air. Various models to estimate the release of
different types of nanoparticles to multiple environmental com-
partments during the life cycle of various products have been
published (Gottschalk et al., 2010; Gottschalk and Nowack, 2011;
Keller et al., 2013, 2014; Keller and Lazareva, 2013; Sun et al.,
2016). However, such studies do not address the release of
organic chemicals, which make up the majority of both existing
and new chemicals.

Given the current status of research, a systematic methodology
for quantitatively estimating the release of organic chemicals
contained in a wide range of consumer products is needed as input
to models used to characterize potential human and ecosystem
exposure to chemicals. Here we present the OrganoRelease
framework, a methodology to estimate the distribution (as a frac-
tion of the total amount used) of the release of a chemical to
different environmental compartments during the use and post-
use phases of consumer products, when product-specific chemi-
cal release measurements are lacking. Post-use phase is when
chemicals are being transported to wastewater or waste treatment
plants after the direct use of consumer products. OrganoRelease
was designed to accommodate different levels of data availability
for any given organic chemical, with the minimum required input
being the chemical structure alone. To achieve this goal, in Orga-
noRelease we connect the chemical's structure (e.g., topological,
physicochemical properties, etc.), possible functional uses which
are grouped based on the chemical's primary function (e.g., sur-
factant, solvent, etc.), potential product categories (e.g., cosmetics,
paints, etc.), and release factors (as fractions of the chemical of
interest released to indoor or outdoor air, wastewater, soil, and
waste during use and post-use phases). OrganoRelease can provide
rapid screening-level estimates of the release of chemicals con-
tained in a range of consumer products during the use and post-use
phases.

2. Methods

OrganoRelease estimates the distribution (in percent) of the
release of a chemical directly released to indoor air, outdoor air,
wastewater, soil, and waste, without considering any post-release
environmental fate and transport processes. OrganoRelease con-
sists of three components that connect the functional use (defined
as the chemical categories grouped based on their primary func-
tion), product category, and release factors together: 1) a Chemical
Functional Use Classifier that estimates the chemical's functional
use if not known; 2) market share data that links the functional
uses with different product categories to quantify the mass fraction

of chemical(s) entering corresponding product streams; and 3)
release factors, based on functional uses and product categories, to
estimate the initial release of the chemical(s) in products to the
environment. The conceptual framework of OrganoRelease is
shown in Fig. 1.

2.1. Chemical Functional Use Classifier

An artificial neural network (ANN) was employed to develop a
Chemical Functional Use Classifier (“Classifier” for short) that es-
timates chemical functional uses such as solvents and surfactants
based on the molecular structure of the chemical. The molecular
structure information is represented by the molecular descriptors,
including constitutional, topological, chemical properties, and
many other descriptor blocks (Todeschini and Consonni, 2009).
ANNs serve as a nonlinear, universal approximation model to
extract the intrinsic knowledge within a large amount of data
(Hornik et al., 1989).

Pairs of chemical-functional use data points were collected from
Chemical Book (ChemicalBook, 2016) based on chemical functional
useswith availablemarket share data. This included nine functional
uses: aerosol propellants, antibacterial agents, flame retardants,
flavors and fragrances, solvents, surfactants, fungicides, herbicides,
and insecticides, which are the major functional uses in consumer
products. This is to ensure a seamless connection between esti-
mating product use categories and functional uses. Since the mo-
lecular descriptors can only be computed for organic compounds,
we removed mixtures, inorganics, salts, and organometallics. After
the data curation process, we had a total of 2900 pairs of chemical-
functional use to build the Classifier.

Dragon 7 (Dragon 7.0, 2016) was used to generate over 4000
molecular descriptors for each chemical, including constitutional,
topological, chemical properties, and many other descriptor blocks.
In order to reduce the number of molecular descriptors to the
recommended ratio of number of entries to number of variables for
quantitative structure-activity relationship (QSAR) models
(Dearden et al., 2009), a filter-based feature selection algorithmwas
performed to remove the molecular descriptors that have a vari-
ance lower than 15 or a correlation coefficient higher than 0.65
with other descriptors (Dutta et al., 2007; Gramatica, 2007).

The collected dataset was randomly split into training, valida-
tion and test datasets. For each functional use category, 20 chem-
icals were first randomly selected as test dataset. For the rest of the
data points within each functional use, 85% were randomly chosen
as training set and 15% as validation set. The ANNmodels were built
based on the training set, and the validation set was used to select
the best fit model. The test set was applied to evaluate the per-
formance of the final model. The Classifier was built in Python,
using the Scikit-learn package (Pedregosa et al., 2011) for dataset
random selection and final model evaluation. TensorFlow (Abadi
et al., 2016) was implemented to build neural network models. A
combination of grid search and random search methods were
performed for hyperparameter optimization to optimize the set of
parameters in the learning algorithm as well as avoid overfitting
(Bergstra et al., 2013). Fig. 2 illustrates the conceptual diagram of
the Classifier building process.

The performance of the Classifier is measured by its precision,
recall, and F1 score, which are defined in Equations (1)e(3). Pre-
cision indicates the ability of the Classifier to not label a negative
sample as positive, while recall implies the ability of the Classifier
to find all positive samples (Powers, 2011). F1 score represents a
weighted harmonic mean of precision and recall. All three metrics
range from 0 to 1; values closer to 1 indicate better model
performance.
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