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a b s t r a c t

In China, ozone pollution shows an increasing trend and becomes the primary air pollutant in warm
seasons. Leveraging the air quality monitoring network, a random forest model is developed to predict
the daily maximum 8-h average ozone concentrations ([O3]MDA8) across China in 2015 for human
exposure assessment. This model captures the observed spatiotemporal variations of [O3]MDA8 by using
the data of meteorology, elevation, and recent-year emission inventories (cross-validation R2 ¼ 0.69 and
RMSE ¼ 26 mg/m3). Compared with chemical transport models that require a plenty of variables and
expensive computation, the random forest model shows comparable or higher predictive performance
based on only a handful of readily-available variables at much lower computational cost. The nationwide
population-weighted [O3]MDA8 is predicted to be 84 ± 23 mg/m3 annually, with the highest seasonal mean
in the summer (103 ± 8 mg/m3). The summer [O3]MDA8 is predicted to be the highest in North China
(125 ± 17 mg/m3). Approximately 58% of the population lives in areas with more than 100 nonattainment
days ([O3]MDA8>100 mg/m3), and 12% of the population are exposed to [O3]MDA8>160 mg/m3 (WHO
Interim Target 1) for more than 30 days. As the most populous zones in China, the Beijing-Tianjin Metro,
Yangtze River Delta, Pearl River Delta, and Sichuan Basin are predicted to be at 154, 141, 124, and 98
nonattainment days, respectively. Effective controls of O3 pollution are urgently needed for the highly-
populated zones, especially the Beijing-Tianjin Metro with seasonal [O3]MDA8 of 140 ± 29 mg/m3 in
summer. To the best of the authors’ knowledge, this study is the first statistical modeling work of
ambient O3 for China at the national level. This timely and extensively validated [O3]MDA8 dataset is
valuable for refining epidemiological analyses on O3 pollution in China.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Ambient ozone (O3) is a worldwide air pollutant harmful to
human health (Brunekreef and Holgate, 2002; WHO, 2006).
Ambient O3 is mainly formed through photochemical reactions
between volatile organic compounds (VOCs) and nitrogen oxides
(NOx) in the presence of sunlight (USEPA, 2013). Exposure to
ambient O3 has been associated with human health problems such
as respiratory and cardiovascular diseases (Kan et al., 2008; Shang
et al., 2013; USEPA, 2013;WHO, 2006;Wong et al., 2008). To protect
public health, the World Health Organization (WHO) proposes the

O3 air quality guideline of a daily maximum 8-h mean ([O3]MDA8) of
100 mg/m3, which is also implemented in China (MEPC, 2012;WHO,
2006). The O3 pollution level in China is predicted to be comparable
to the global average (Brauer et al., 2016). In contrast to the
decreasing trend of “visible” fine particulate matter (PM2.5) pollu-
tion in China, “invisible” O3 pollution shows an increasing trend
and becomes the primary air pollutant in warm seasons (Anger
et al., 2015; Brauer et al., 2016; Zhao et al., 2016). While site-
based ambient O3 concentrations have been regularly monitored
since 2013 via the national air qualitymonitoring network for China
(MEPC, 2015), nationwide spatiotemporal distributions of ambient
O3 levels are required for human exposure assessment.

Chemical transport models (CTMs), such as the Community
Multiscale Air Quality model (CMAQ) (Byun and Schere, 2006),
have been employed to predict the spatiotemporal distributions of
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ambient O3 worldwide (Bell, 2006; Brauer et al., 2016; Hu et al.,
2016; Wang et al., 2011; Zhang et al., 2011). By utilizing meteoro-
logical conditions predicted by climate models, CTMs simulate
environmental processes of O3 and its precursors, providing guid-
ance on source control (Jacob, 1999). CTMs have been extensively
validated against O3 monitoring data in the United States, indi-
cating that CTMs are capable of capturing monthly or seasonal O3
concentrations at large spatial scales (USEPA, 2013; Zhang et al.,
2011). However, fine-scale predictions by CTMs may deviate
widely from observations due to imperfect input data and limited
knowledge (USEPA, 2013). In addition, CTMs generally require high
computing resources and a wealth of input data (Beelen et al.,
2009). The predictive performance of CTMs for China tends to
degrade due to the high uncertainty associated with the emission
inventories, especially on a fine spatiotemporal scale (Streets et al.,
2003; Zhang et al., 2008). While many efforts have been made to
refine and update the emission inventories for China (Li et al., 2017;
Wu and Xie, 2017), this process requires much extra labor and time.
The publicly available emission inventories for China are only
released for certain years, e.g., 2008 and 2010 (Li et al., 2017), which
may also be used in CTMs simulations for more recent years. The
predictive performance of such simulations for more recent years
tend to be lower, and post hoc adjustment to the emission in-
ventories are generally required. Moreover, long-term and regional/
national monitoring data is critical for validating the CTM pre-
dictions (USEPA, 2009). However, validations of CTMs for China are
quite limited due to the scarcity of ambient O3 monitoring data
before 2013, and the exposure assessment results based on these
CTMs predictions may be encumbered (Brauer et al., 2016; Guo
et al., 2016; Lou et al., 2015; Madaniyazi et al., 2016). In order to
provide more recent and reliable O3 distributions for human
exposure assessment, therefore, statistical models based on the
extensive O3 monitoring network for China are more favored.

Statistical models such as geostatistical models and land use
regressions (LUR) are commonly used to predict spatiotemporal
distributions of ambient O3 concentrations (Adam-Poupart et al.,
2014; Beelen et al., 2009; Brauer et al., 2008; Wang et al., 2015).
On the basis of O3 observations, these statistical models are
parameterized with the spatiotemporal autocorrelations of O3
levels and/or their relationships with the predictor variables such
as land use types and meteorological conditions. The statistical
models that incorporate CTMs predictions as their predictor vari-
ables are also referred to as hybrid models, which tend to improve
the predictive performance with increased model complexity (Di
et al., 2017; Wang et al., 2016). Although statistical models do not
explicitly simulate the environmental processes of O3, they gener-
ally exhibit higher predictive performance than CTMs on fine
spatiotemporal scales in the presence of extensive monitoring data
(Adam-Poupart et al., 2014; Hoek et al., 2008; Marshall et al., 2008).
While statistically modeling ambient O3 distributions is common in
the western countries (Adam-Poupart et al., 2014; Beelen et al.,
2009; Brauer et al., 2008; Wang et al., 2015), the number of sta-
tistical studies for China is rather limited due to the paucity of
monitoring data before 2013. Fortunately, the national air quality
monitoring network for China has been established and expanded
since 2013 (MEPC, 2015). In 2015, hourly ambient O3 concentrations
were measured at more than 1500 sites located in more than 300
cities. However, such a large dataset is still not sufficient to assess
the nationwide human exposure levels, since many other areas still
lack monitoring data. Statistical models trained with the moni-
toring data are needed to predict the O3 concentrations in the
unmonitored areas.

Machine learning algorithms, which are statistical models from
the algorithmic modelling culture (Breiman, 2001b), generally
show predictive performance that is comparable or superior to

traditional statistical models such as general linear regression and
kriging (Hastie et al., 2009; Hu et al., 2017; Kanevski, 2008; Li et al.,
2011). Random forests, as a popular machine learning algorithm,
make statistical predictions by averaging an ensemble of de-
correlated classification or regression trees, and they are capable
of handling nonlinear relationships and interaction effects
(Breiman, 2001a). An algorithm comparison study found that
random forests and gradient boosting machine (GBM) exhibit the
best performance in predicting PM2.5 concentrations among ten
machine learning algorithms (Reid et al., 2015). The geographically-
weighted GBM shows even higher prediction performance than
GBM but is much more computationally expensive (Zhan et al.,
2017). Random forests are thus one of the optimal choices when
striking a balance between prediction accuracy and computing
cost. Moreover, unlike some other machine learning algorithms
(e.g., neural network), random forests can show the contribution of
each predictor variable by the variable importancemeasure and the
partial dependence plot (Hastie et al., 2009). The method for
evaluating the variances of prediction made by random forests is
also available (Wager et al., 2014). In a recent study, the random
forest approach has shown good performance in predicting the
PM2.5 concentrations for the conterminous United States, but the
prediction uncertainties are not evaluated (Hu et al., 2017). It is
important to show the prediction uncertainties and demonstrate
the applicability of random forests to different chemical species and
geographical regions. Therefore, random forests are proposed to
predict the nationwide spatiotemporal distributions of [O3]MDA8 in
China for human exposure assessment by utilizing the valuable
monitoring dataset.

This study aims to predict the spatiotemporal distributions of
daily [O3]MDA8 across China in 2015. A 0.1� � 0.1� grid is used to be
consistent with the previous global or national exposure assess-
ments (Brauer et al., 2016; Guo et al., 2016). Random forest is
implemented with variable selection to statistically model the
spatiotemporal variations of [O3]MDA8 based on the publicly avail-
able datasets including the meteorology, elevation, and emission
inventories. On the basis of the predicted [O3]MDA8, we assess the
exposure intensities and durations for the populations living in
different regions of China. To the best of the authors’ knowledge,
this study is the first statistical modeling work of ambient O3 for
China at the national level. This timely and extensively validated
[O3]MDA8 dataset are valuable for refining epidemiological analyses
on O3 pollution in China.

2. Materials and methods

2.1. Data preparation

The hourly O3 monitoring data for 2015 were obtained from the
national air quality monitoring network for mainland China and
Hainan Island (MEPC, 2015), the Environmental Protection
Department of Hong Kong for Hong Kong (EPDHK, 2015), and the
Environmental Protection Administration of Taiwan for Taiwan
(EPAROC, 2015). The O3 concentrations were measured with the
ultraviolet-spectrophotometry method. The highest 8-h moving
average for each day was calculated as [O3]MDA8 after data cleaning
at each monitoring site by following the procedure adopted by the
California Air Resources Board (CARB, 2006). For a given day to be
included, this procedure requires more than six hourly measure-
ments in each third of the day (i.e., 0:00am-7:00am, 8:00am-
15:00pm, and 16:00pm-23:00pm; Beijing Standard Time, UTCþ8),
and no more than two consecutive hourly measurements missing
within that day. Around half a million [O3]MDA8 records were ob-
tained from 1608 monitoring sites across China in 2015 (Fig. 1),
which weremainly located in East, Central, North, and South China.
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