
On the mechanisms of two composite methods for construction of
multivariate drought indices

Yi Liu a,b, Ye Zhu c, Liliang Ren a,⁎, Bin Yong b, Vijay P. Singh d, Fei Yuan a, Shanhu Jiang a, Xiaoli Yang a

a State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
b School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
c College of Hydrometeorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
d Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843-2117, USA

H I G H L I G H T S

• Two composite drought indices were
constructed based on VIC-3L simula-
tions.

• Performances of ADI and JDI for multi-
variate drought characterization were
assessed.

• The degree of consistency between ADI
and JDI was evaluated.

• Actual evapotranspiration was the main
factor for inconsistency between ADI
and JDI.
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Droughts are comprehensive and complex issues that need to be characterized from a multivariate perspective.
In recent years, a number of composite indices have been proposed for drought characterization. However, rare
studies have systematically compared similarities and dissimilarities of these indices, and they have provided lit-
tle insights into the combination mechanisms. To address this issue, two widely used combination approaches,
namely the principal component analysis (PCA) and copula based joint probability distribution were employed,
with the corresponding integratedproduct denoted as theAggregateDrought Index (ADI) and Joint Drought Def-
icit Index (JDI). Five constituents for constructing ADI and JDI were derived from the variable infiltration capacity
model (VIC) monthly simulations over the Yellow River basin (YRB), China, including precipitation (P), actual
evapotranspiration (ET), soil moisture of top two layers, and runoff (during 1961–2012). Results showed that
the behavioral patterns of ADI and JDI may not be easily influenced by the variation of one single element, and
they represented comprehensive moisture status well. A further comparison between these two composite indi-
ces suggested that ADI and JDI behaved similarly inmost areas of YRB, with some dissimilarities in the source re-
gion. The particular behavior of ET was responsible for the inconsistency. Comparing to other regions, an
enhanced role of potential evapotranspiration (PET) was imposed on ET in the source region, leading to a poor
relationship of ETwith P and other hydrological variables. Accordingly,when constructing composite drought in-
dices, the drought information indicated by ETwasmore easily abandoned by ADI but reserved in JDI. This study
clearly demonstrates the mechanisms of two common integrated approaches in blending different drought
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information, which has significant implications for composite drought indices construction and application, and
potentially provides some valuable references for the improvement of monitoring techniques in future drought
related researches.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Drought is a stochastic and recurring natural hazard that has costly
and devastating impacts on surface and groundwater supply, crop
production, ecological water quality, electricity production (hydro-
power), modern industrial production, waterborne transportation, etc.
(Wilhite, 2000; Van Loon, 2015; Crausbay et al., 2017). In the context
of global warming and expanding water consumption, water shortages,
arising from abnormally dry conditions, are further aggravated and be-
comemore severe, which highlights the significance of developing early
drought warning systems and improving drought monitoring tech-
niques (Hayes et al., 2011; Trenberth et al., 2014).

In recent years, drought indices have become a primary option for
drought monitoring and characterization. Based on different variables
and mathematical algorithms, more than 150 drought indices have
been proposed (Niemeyer, 2008). Among these indices, the Palmer
drought severity index (PDSI; Palmer, 1965) and the standardized
precipitation index (SPI; McKee et al., 1993) could be regarded as two
outstanding representatives, with their algorithms widely applied in
other drought indices. For example, following the physical scheme
that PDSI adopts, several newPDSI variants intending to solve the draw-
backs of the original version (e.g., coarse hydrological modeling, incon-
sistent spatial behavior, and fixed time scale) have been developed
(e.g., Wells et al., 2004; Xu et al., 2012; Liu et al., 2017). Following the
standardization and definition of time scales in SPI, several standardized
indices (SIs) such as the standardized runoff index (SRI; Shukla and
Wood, 2008) and the standardized precipitation evapotranspiration
index (SPEI; Vicente-Serrano et al., 2010) were developed by consider-
ing different hydro-meteorological variables (e.g., runoff for SRI, precip-
itation and evapotranspiration for SPEI). In spite of their wide
applications in regional and global drought assessment, it should be
noted that the above listed indices have been mostly developed for
one specific form of droughts.

Drought can be classified into four types: meteorological, agricul-
tural, hydrological, and socio-economic (Mishra and Singh, 2010).
Among these four types, the meteorological drought is recognized as
the driving force, which has the potential to cause a lagged impact on
soil moisture content (i.e., agricultural drought). The persistent deple-
tion of soilmoisture storagemay further influence groundwater system,
resulting in hydrological drought (Zargar et al., 2011; Zhu et al., 2016).
In otherwords, the same area during one certain periodmay experience
different types of droughts more or less simultaneously, and it may not
be sufficient to use one single drought index (e.g., SPI) to depict the
comprehensive water deficit conditions. This highlights the necessity
of drought characterization from a multivariate perspective.

As an effective countermeasure, the proposal of composite drought
indices incorporating a variety of drought information brings a new di-
rection to depict the moisture deficiency (Hao and Singh, 2015; Huang
et al., 2016). For instance, the U.S. Drought Monitor (USDM), that inte-
grates multiple climate drought indices, land surface model outputs,
and subjective modifications based on local impacts and vulnerability,
can be recognized as a state-of-the-art composite product which is ex-
tensively applied for drought monitoring and assessment (Svoboda
et al., 2002). Thereafter, several mathematical statistics approaches
were introduced to blend information with a variety of composite
drought indices proposed. These include the linear combination
approach based indices like the Aggregate Drought Index (ADI;
Keyantash and Dracup, 2004), Grand Mean Index (GMI; Mo and

Lettenmaier, 2013), and Objective Blended North American Land Data
Assimilation System (NLDAS) Drought Index (OBNDI) (Xia et al.,
2014). With respect to the nonlinear method, the copula function is
mostly used, such as the Joint Drought Deficit Index (JDI; Kao and
Govindaraju, 2010). In spite of these developments, rare studies have
comprehensively evaluated the similarity and difference among these
blending methods, as well as a lack of systematic analysis on their
each strengths and limitations in combining various sources.

The objective of this paper is to investigate the mechanisms of two
popular blending approaches, namely the principal component analysis
(PCA) and the joint probabilistic distribution (copula) methods, in con-
structing composite drought indices,with their products denoted asADI
and JDI, respectively. The remainder of this study is organized as fol-
lows. Information on hydro-meteorological forcings, combined with
the procedures of two drought indices and the evaluation framework
are described in Section 2. Section 3 presents spatiotemporal compari-
sons between ADI and JDI, combinedwith an analysis of the reasons un-
derlying the disparate behaviors between the two blending approaches.
Finally, conclusions are drawn in Section 4.

2. Materials and methods

2.1. Study area and datasets

TheYellowRiver basin (YRB; located between32°N–42°N and 96°E–
119°E) in China was selected as the study area. With a total length of
5456 km, the river flows through nine provinces, controlling a drainage
area of 795,000 km2. Because of its vast spatial range, this basin spans
over four climate zones, i.e. arid, semi-arid, semi-humid, and humid cli-
mate zones from northwest to southeast, respectively. The elevation
ranges from 0 to 6403m above sea level with topography generally de-
creasing from west to east (Fig. 1). The Tibet Plateau, Loess Plateau and
Huang-Huai-Hai Plain are three primary geomorphic types. Affected by
the monsoon climate and diverse terrain conditions, precipitation in
YRB presents a high spatial variability and intensively falls between
June and September, accounting for approximately 58%–75% of the an-
nual precipitation.

The datasets used in this study included daily hydro-meteorological
observations (span from 1961 to 2012) and geographical information.
As shown in Fig. 1, 101 national standard meteorological stations in
and around YRB were employed, and the records including precipita-
tion, mean temperature, maximum and minimum temperatures, and
wind speed were downloaded from the ChinaMeteorological Data Ser-
vice Centre (http://data.cma.cn/). Streamflow observations of 10 hydro-
logical stations (i.e., Tangnaihai (TNH), Lanzhou (LZ), Toudaoguai
(TDG),Wubu (WB), Longmen (LM), Hejin (HJ), Xianyang (XY), Huaxian
(HX), Sanmenxia (SMX) and Huayuankou (HYK)) situated at the trunk
stream and main tributaries were collected from the “China Year Books
of Hydrology”which were published by the Hydrological Bureau of the
Ministry of Water Resources (http://www.hydroinfo.gov.cn/). The geo-
graphical information needed to drive the hydrological model included:
the digital elevation data with a 3 arc-second (about 90 m) spatial res-
olution was retrieved from the shuttle radar topographymission digital
elevationmodel (http://srtm.csi.cgiar.org/); the land cover image (1 km
in spatial resolution)was provided by theUniversity ofMaryland's 1 km
Global Land Cover Production (Hansen et al., 2000); and soil datawith a
30 arc-second (about 1 km) spatial resolutionwas collected from the 5-
min Food and Agriculture Organization dataset (Allen et al., 1998).
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