FISEVIER

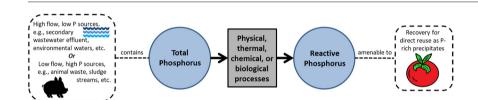
Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Review

Meta-analysis of non-reactive phosphorus in water, wastewater, and sludge, and strategies to convert it for enhanced phosphorus removal and recovery


Kaushik Venkiteshwaran, Patrick J. McNamara, Brooke K. Mayer *

Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA

HIGHLIGHTS

- Meta-analysis reveals non-reactive P (NRP) comprises a substantial portion of total P.
- NRP must be physically, chemically, or biologically converted to soluble RP for recovery.
- No technologies have been implemented to recover soluble NRP from water matrices.
- P conversion processes must be specifically tested in water, wastewater, and sludge.

GRAPHICAL ABSTRACT

ARTICLE INFO

Article history:
Received 8 May 2018
Received in revised form 28 June 2018
Accepted 29 June 2018
Available online xxxx

Editor: Zhen (Jason) He

Keywords:
Advanced oxidation processes (AOP)
Conversion
Hydrolysis
Organic phosphorus
Orthophosphates
Soluble reactive phosphorus (SRP)

$A\ B\ S\ T\ R\ A\ C\ T$

Current and future trends indicate that mining of natural phosphorus (P) reserves is occurring faster than natural geologic replenishment. This mobilization has not only led to P supply concerns, but has also polluted many of the world's freshwater bodies and oceans. Recovery and reuse of this nuisance P offers a long-term solution simultaneously addressing mineral P accessibility and P-based pollution. Available physical, chemical, and biological P removal/recovery processes can achieve low total P (TP) concentrations (≤100 µg/L) and some processes can also recover P for direct reuse as fertilizers (e.g., struvite). However, as shown by our meta-analysis of over 20,000 data points on P quantity and P form, the P in water matrices is not always present in the reactive P (RP) form that is most amenable to recovery for direct reuse. Thus, strategies for removing and recovering other P fractions in water/wastewater are essential to provide environmental protection via P removal and also advance the circular P economy via P recovery. Specifically, conversion of non-reactive P (NRP) to the more readily removable/recoverable RP form may offer a feasible approach; however, extremely limited data on such applications currently exist. This review investigates the role of NRP in various water matrices; identifies NRP conversion mechanisms; and evaluates biological, physical, thermal, and chemical processes with potential to enhance P removal and recovery by converting the NRP to RP. This information provides critical insights into future research needs and technology advancements to enhance P removal and recovery.

© 2018 Elsevier B.V. All rights reserved.

* Corresponding author.

E-mail address: Brooke.Mayer@marquette.edu (B.K. Mayer).

Contents

1.	1. Introduction		
	1.1.	Phosphorus as a critical nutrient and a pollutant	662
	1.2.	Objectives: what is the big deal about NRP and what can we do about it?	663
2.	All P	is not created equal: why should we worry about NRP?	663
	2.1.		663
	2.2.	Distribution of P forms across water matrices	664
	2.3.	P bioavailability	665
	2.4.	Removal and recovery of P	667
	2.5.	Can we capitalize on conversion of NRP?	667
3.	Potential routes for NRP conversion		668
	3.1.	Mechanisms of NRP conversion	668
	3.2.	Biological P conversion	668
	3.3.	Physical P release	669
	3.4.	Thermal P conversion	669
	3.5.	Acid/alkali P conversion	669
	3.6.	r	670
4.	Comp	parative assessment of P conversion process applications	670
	4.1.	Conversion process comparison	670
	4.2.	Relevance of P conversion processes to applications beyond sludge solubilization	671
5.	Concl	lusions and future research needs	671
Acknowledgements			672
Appendix A. Supplementary data		672	
Refe	References		

1. Introduction

1.1. Phosphorus as a critical nutrient and a pollutant

Paradoxically, phosphorus (P) is simultaneously an important non-renewable agricultural nutrient and an environmental pollutant. On one hand, modern human society depends on P to sustain the global

food supply. Rapid increases in human population and the subsequent need for high agricultural productivity have led to substantial increases in fertilizer use. Currently, P is primarily obtained from subsurface mining of phosphate minerals. Unfortunately, these mineral P resources replenish on geologic time scales, making P an essentially non-renewable resource, characterized by rapidly depleting finite reserves. This, coupled with the fact that 90% of minable P is found in only five

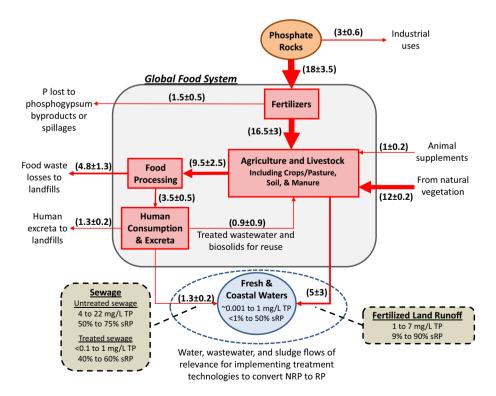


Fig. 1. Anthropogenic phosphorus (P) flows (million metric tonnes of P per year) for global food production, adapted from Cordell and White (2014). The thickness of each arrow indicates the relative magnitude of each P flow. The majority of mined P (18 ± 3.5 million tonnes of P per year) is used in fertilizers, approximately 35% (6.3 ± 3 million tonnes of P per year) of which is lost to surface waters. Soluble reactive P (sRP) accounts for a majority of total P (TP) in many waters, but a substantial proportion of the TP in point source sewage and sludge, non-point runoff, and environmental waters can consist of non-reactive P (NRP), which may be more difficult to remove and is not directly recoverable.

Download English Version:

https://daneshyari.com/en/article/8858640

Download Persian Version:

https://daneshyari.com/article/8858640

<u>Daneshyari.com</u>