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H I G H L I G H T S

• Multiple wavelet coherence identified
localized and scale-dependent controls
of SOM.

• Climate & terrain dominated at large
scales, vegetation dominated at small
scales.

• Three-factor combination was accept-
able to explain variability at large scales.
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Environmental factors have shown localized and scale-dependent controls over soil organicmatter (SOM) distri-
bution in the landscape. Previous studies have explored the relationships between SOM and individual control-
ling factors; however, few studies have indicated the combined control from multiple environmental factors. In
this study, we compared the localized and scale-dependent univariate and multivariate controls of SOM along
two long transects (northeast, NE transect and north, N transect) from China. Bivariate wavelet coherence
(BWC) between SOM and individual factors and multiple wavelet coherence (MWC) between SOM and factor
combinations were calculated. Average wavelet coherence (AWC) and percent area of significant coherence
(PASC)were used to assess the relative dominance of individual and a combination of factors to explain SOMvar-
iations at different scales and locations. The results showed that (in BWC analysis) mean annual temperature
(MAT) with the largest AWC (0.39) and PASC (16.23%) was the dominant factor in explaining SOM variations
along the NE transect. The topographic wetness index (TWI) was the dominant factor (AWC = 0.39 and PASC
= 20.80%) along the N transect. MWC identified the combination of Slope, net primary production (NPP) and
mean annual precipitation (MAP) as the most important combination in explaining SOM variations along the
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NE transect with a significant increase in AWC and PASC at different scales and locations (e.g. AWC = 0.91 and
PASC = 58.03% at all scales). The combination of TWI, NPP and normalized difference vegetation index (NDVI)
was themost influential along theN transect (AWC=0.83 and PASC=32.68% at all scales). The results indicated
that the combined controls of environmental factors on SOM variations at different scales and locations in a large
area can be identified by MWC. This is promising for a better understanding of the multivariate controls in SOM
variations at larger spatial scales and may improve the capability of digital soil mapping.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Soil organic matter (SOM), as a major sink and source of soil carbon,
plays an important role in terrestrial carbon dynamics and has strong
potential for mitigating climate change (Arthur et al., 1990; Davidson
and Janssens, 2006; Marchant et al., 2015). It is also a key indicator for
soil fertility and soil quality. Thus, an adequate understanding of SOM
spatial variations is essential for reducing uncertainty in assessing ter-
restrial carbon cycles, evaluating soil quality and developing sustainable
agriculture (Corwin et al., 2006; Rumpel and Kögel-Knabner, 2011;
Stockmann et al., 2015; Xu et al., 2018).

Mapping soil properties variability at the field, regional, national,
and global scale has improved in the past two decades (Chaplot et al.,
2000, 2010; Guo et al., 2013;Viscarra Rossel et al., 2014; Mansuy
et al., 2014; Zhang et al., 2017; Chen et al., 2018), especially after dig-
ital soil mapping (DSM) was put forward. DSM describes a soil-
landscape model based on the spatial prediction function between
soil properties and a series of environmental factors, such as terrain,
climate, organic and relief factors (McBratney et al., 2003; Scull et al.,
2003). High-precision DSM requires the selection of the most valu-
able factors for developing a high performing and meaningful rela-
tionship between soil properties and environmental factors, which
are selected according to data availability or the researcher's exper-
tise (Miller et al., 2015). However, the factors under different envi-
ronmental conditions often present variable privileges and
different interactive relationships (Poggio et al., 2013; Minasny
et al., 2013). Additionally, SOM variability was the consequence of
the combined effects of soil physical, chemical, and biological pro-
cesses that operate at different intensities and on a wide range of
spatial and temporal scales (Goovaerts, 1998; Biswas and Si, 2011).
Some of these processes with high frequency varying in space are
called as small-scale processes, while other processes with low fre-
quency are known as large-scale processed (Si, 2008). Therefore,
the relationship between SOM and environmental factors was
scale- and location-dependent (Lark et al., 2004; Hu and Si, 2013).
Exploring multivariate interactive and localized and scale-
dependent relationships in controlling SOM variability make it pos-
sible to select the optimal and potentially useful factors from a mas-
sive data catalog, leading to the development of a more accurate
spatial distribution model of SOM.

Quantitative methods have been widely employed to character-
ize scale-/location-specific relationships between soil properties
and controlling factors individually including Fourier transform
(FT) (Webster, 1977; McBratney and Webster, 1981), multi-
resolution analysis (MRA) (McBratney, 1998; Biswas et al., 2013a),
empirical mode decomposition (EMD) (Biswas et al., 2013b; Huang
et al., 2015, 2017) and wavelet transforms (WT) (Zhou et al., 2016;
Guo et al., 2018; Huang et al., 2018). However, the processes in geo-
science are usually complex and may be affected by multiple vari-
ables, concurrently. SOM variance may not be well explained by
single factor (Dai and Huang, 2006). During the past few decades,
several methods have been explored for analyzing multivariate rela-
tionships at different scales and locations. For example, multiple
spectral coherence (MSC) was used to reveal the relationships be-
tween soil-saturated hydraulic conductivity and multiple soil prop-
erties at different scales (Si, 2008). However, MSC underestimated

the multivariate relationships and was able to build on the assump-
tion of stationary examples from the spatial series. Multivariate em-
pirical mode decomposition (MEMD) can separate each variable into
a finite number of intrinsic mode functions (IMFs) according to dom-
inant scales (Rehman andMandic, 2010). Since it works well for non-
linear and non-stationary data, the combination of MEMD and
squared multiple correlation coefficient (MCC) has advantages in ex-
ploring the multivariate relationships (Hu and Si, 2013; She et al.,
2015). However, the correlation between SOM and environmental
factors changes with scales and locations. The neutralization effect
of MCC and the insufficiency of MEMD in capturing all the variances
may fall short in explaining SOM variations at multiple scales and lo-
cations (Hu et al., 2017). Moreover, the above mentioned multivari-
ate methods are not suitable to identify localized multivariate
relationships.

Multivariate wavelet coherency (MWC), developed from bivariate
wavelet coherence (BWC) and trivariate wavelet coherence (TWC), is
relatively a new method (Hu and Si, 2016). Owing to its capacity to
deal with cross-correlated variables, MWC is much more robust than
BWC and TWC. MWC has been compared with common multivariate
methods and it demonstrated superior performance in untangling
scale-specific and localizedmultivariate relationships in the geosciences
(Agarwal et al., 2017; Karatas et al., 2017). Therefore, it can be useful for
selecting factors for developing scale- and location- dependent SOM
spatial prediction models. However, currently, MWC has only been
employed for certain properties, such as evaporation from water sur-
faces and soil water content (Hu and Si, 2016; Hu et al., 2017) at the
field-scale. There is no information on the localizedmultiple controlling
factors of SOM variability at multiscale and different environment con-
ditions. Therefore, the objectives of the study were 1) to characterize
scale- and location-dependent univariate and multivariate controlling
relationships between environmental factors and SOM along two tran-
sects from the Northeast and North China Plain using BWC and MWC
and 2) to compare the factors performance and identify dominant com-
binations of factors explaining the SOMvariability at different scales and
locations in different landscapes.

2. Materials and methods

2.1. Study area and soil sampling

The study area and SOM dataset presented in this paper have been
previously reported by Zhou et al. (2016). In brief, the study area is lo-
cated in the Northeast and North China Plains, China (111°27′80″E–
135°7′39″E, and 32°18′46″N–48°21′20″N) covering an area of approxi-
mately 642,000 km2 (Fig. 1). A total of 1078 soil samples were collected
from the 20-cm surface layer in 2003 and 2004. After being air-dried
and sieved, the SOM content was determined calorimetrically after
H2SO4-dichromate oxidation at 150 °C for 30 min. SOM sample points
were interpolated over the whole study area using inverse distance
weighting and the cross validation of the interpolation showed a deter-
mination of coefficient of 0.70.

Two transects were identified in considering the climatic zone
within the study area: mid-temperate zone of Northeast (NE) and
warm temperature zone of North (N) China Plain. Both transects were
1280 km long with 128 sample points at 10 km sampling intervals.
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