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• Measurement errors can be filtered
through incorporating in the covariance
structure of the spatial model.

• Acknowledging measurement errors in
spatial modeling yields a lower uncer-
tainty in spatial predictions.

• MCMC techniques can be used to define
the posterior density of measurement
error variance.

• Performance of REML-EBLUP approach
is comparable to MCMC techniques in
terms of bias correction of the spatial
model.
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Spatial modelling of environmental data commonly only considers spatial variability as the single source of un-
certainty. In reality however, themeasurement errors should also be accounted for. In recent years, infrared spec-
troscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at
meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be
less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter
out themeasurement error variability by incorporating themeasurement error variance in the spatial covariance
structure of themodel. The study was carried out in the Lower Hunter Valley, New SouthWales, Australia where
a combination of laboratorymeasured, and vis-NIR andMIR inferred topsoil and subsoil soil carbondata are avail-
able. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo
(MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data
in the presence of measurement error. The results revealed that the measurement error can be effectively
filtered-out through the proposed technique. When the measurement error was filtered from the data, the pre-
diction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon.
Further, the MCMC technique was successfully used to define the posterior distribution of measurement error.
This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is
not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering
the measurement error of any kind of continuous spatial environmental data.
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1. Introduction

Soil carbon is recognized as a variable central to soil fertility and ag-
ricultural productivity. It is also well known for its capacity to serve as a
store for atmospheric carbon. Transferring atmospheric CO2 into long-
lived pools and securely storing so that it is not immediately remitted
is known as carbon sequestration (Lal, 2004; Yigini and Panagos,
2016). Small increases in soil carbon stocks per unit land area are antic-
ipated to result in significant changes in climate and land use manage-
ment (Falloon and Betts, 2010). Understanding soil carbon processes
for implementing “best practice” for balancing carbon budgets is pivotal
for carbon sequestration programs (Dawson and Smith, 2007). These
programs need extensive sampling for auditing soil carbon stocks. Sim-
ilarly, the assessment of soil health would also require conducting ex-
tensive measurement of soil carbon.

With the growing need for detailed soil carbondata, existing soil car-
bonmaps and inventories are becoming inadequate, especially for large
scale projects (Stevens et al., 2013). Standard techniques of soil carbon
measurements such as dry combustion and oxidation analyses can be
tedious, time consuming and expensive (Nocita et al., 2014). Con-
versely, infrared spectroscopy has been demonstrated to be a near com-
parable measurement technique that has the added advantage of being
relatively low cost (Janik et al., 2007; Reeves III, 2010; Rossel and
Webster, 2012; Stevens et al., 2013; Viscarra Rossel et al., 2006). The
low cost associated with this technique means that mapping studies
can afford higher sampling densities, thus enabling a detailed under-
standing soil carbon spatial variation across landscapes.

The use of infrared spectroscopy for soil analysis has been thriving
over the past decade (Bellon-Maurel andMcBratney, 2011). These stud-
ies have mostly focused on predicting basic soil composition, particu-
larly soil organic carbon (SOC) and texture (Stenberg et al., 2010).
Bellon-Maurel and McBratney (2011) provide a detailed review of the
studies on the use of NIR and MIR spectroscopic studies for soil carbon
inference. The review showed that these soil spectral inference studies
are largely dedicated to predicting soil carbon content for point loca-
tions. However, it is proposed that these soil spectral inference studies
could be further expanded into a spatial context for optimally predicting
soil carbon content at unsampled locations, and ultimately for soil map-
ping purposes.

Infrared spectroscopic soil carbon measurement is an indirect mode
of measurement. The carbon concentrations are inferred using calibra-
tion models based on the characteristics of the absorption spectrum of
scanned soil samples. One drawback of using these soil carbon data is
the comparatively largermeasurement error associatedwith calibration
models compared to the data acquired through standard dry combus-
tion techniques (Bellon-Maurel et al., 2010).

When predicting the soil carbon content spatially, we are interested
in the actual value rather than the value distorted by the measurement
error. More often than not, measurement error is disregarded. For ex-
ample, a recent study by Rial et al. (2017) mapped topsoil organic car-
bon content using Visible-Near Infrared (VNIR) spectroscopic
measurements without accommodatingwithin themethodology a pro-
cedure for handling the measurement errors in the data.

To achieve an optimal prediction in a spatial modelling exercise, the
measurement errors should be filtered out (Cressie, 1991). One way of
accounting for the measurement error is to include measurement
error variance (σε

2) in the variogram or covariance structure of the spa-
tial model. This is also known as kriging with uncertain data, where the
error variance is added to the diagonal of the spatial covariance matrix
(Delhomme, 1978; Knotters et al., 1995; Laslett and McBratney, 1990).
Thisfilters themeasurement error variance from the nugget component
of the experimental variogram, ultimately leading to lower uncertainty
of spatial predictions.

The accuracy of the spatial predictions can also be influenced by the
techniques of model parameter estimation. Conventional techniques
using method-of-moments can be biased (Lark et al., 2006), and thus

the Residual Maximum Likelihood Method (REML) and Bayesian infer-
ence from Markov Chain Monte Carlo (MCMC) analysis are the
established techniques for unbiased parameter estimation (Poggio et al.,
2016). Lark et al. (2006) used REML for estimating parameters of the co-
variance function directly from the data, and then the estimated parame-
ters were used for the spatial prediction inwhat is termed as an empirical
best linear unbiased predictor (EBLUP). MCMC simulation can also be ap-
plied for estimating the variogram and trend model parameters directly
from data. Minasny et al. (2011) advocated the use of MCMC simulation
for parameter inference in model-based soil geostatistics including the
spatial prediction of soil carbon. The basic advantage of MCMC over
REML is that MCMC estimates the underlying uncertainty of the parame-
ters, whereas REML relies on a single realisation of the variogram param-
eters. However, MCMC estimations are computationally expensive
compared to the REML approach due to the slow convergence rates of
the former (Mossel and Vigoda, 2006; Poggio et al., 2016).

In this study, we explored the applicability of REML-EBLUP and
MCMC simulation for measurement error parameter inference for soil
carbon spatial modelling. A combination of laboratory measured (dry
combustion), near infrared red (NIR) andmid infrared (MIR) spectra es-
timated soil carbon data and associated σε

2 were used for predicting soil
carbon content across the Hunter Valley region, NSW, Australia. Subse-
quently, we compared the prediction capability of eachmodel, i.e. incor-
porating σε

2, and without σε
2.

2. Theoretical context

The stochastic spatial process of soil carbon can be expressed by a
linear mixed model.

S ¼ MβþWuþ e ð1Þ

S is the vector of n observations,M is the n × p design matrix that asso-
ciates with each value of p fixed effects, and β is the vector of p fixed ef-
fect coefficients. u is the vector of q random effects, realisations of
variable u, which is associated with the n observations by an n × q de-
sign matrix W. It is assumed that u is the spatially dependent random
variable, while e independent random errors and u and e are indepen-
dent to each other. Hence, assuming u and e are jointly Gaussian,
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where σ2 is the variance of the independent error, ξ is the variance ratio
between u and σ2 andG is the correlationmatrix of u. e represents both
measurement errors and the short scale variations of the spatial process
which is geo-statistically known as the nugget effect. Assuming u is
drawn from second order stationary random process, G can be
characterised by a suitable covariance function since it only depends
on the relative locations of the observations (Lark et al., 2006).

TheMatérn covariance function has been effectively used in soil sci-
ence (Minasny andMcBratney, 2005) tomodel the covariance structure
of the random effects. The Matérn covariance function (K) is given as,

Kij ¼ c0δij þ c1
1

2υ−1Γ υð Þ
h
r

� �υ

Κυ
h
r

� �" #
ð3Þ

where Kij is the covariance between observation i and j, h represents the
separation distance between i and j, δijdenotes the Kronecker delta (δij
= 1 if i = j and δij = 0 when I ≠ j), c0 + c1 signifies the sill variance, Κv

is the modified Bessel function of the second kind of order υ. Γ is the
gamma function, r denotes the distance or ‘range’ parameter and υ is
the spatial ‘smoothness’. The latter parameter allows greater flexibility
in modelling the local spatial covariance. The parameters of the covari-
ance function along with σ2 and ξ can be estimated using REML. This
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