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H I G H L I G H T S

• We present a novel way to select sites
for field studies representing a larger re-
gion: the Quality Index.

• The Quality Index prioritizes sites that
cover the range in variables of interest
of a larger region and are well-distrib-
uted in variable space.

• A genetic algorithm allows for selecting
optimal sites by maximizing the QI.
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Many environmental studies require the characterization of a large geographical region using a range of repre-
sentative sites amenable to intensive study. A systematic approach to selecting study areas can help ensure
that an adequate range of the variables of interest is captured. We present a novel method of selecting study
sites representing a larger region, in which the region is divided into subregions, which are characterized with
relevant independent variables, and displayed in mathematical variable space. Potential study sites are also
displayed this way, and selected to cover the range in variables present in the region. The coverage of sites is
assessed with the Quality Index, which compares the range and standard deviation of variables among the
sites to that of the larger region, and prioritizes sites that are well-distributed (i.e. not clumped) in variable
space. We illustrate the method with a case study examining relationships between agricultural land use, phys-
iography and stream phosphorus (P) export, in which we selected several variables representing agricultural P
inputs and landscape susceptibility to P loss. A geographic area of 110,000 km2 was represented with 11 study
sites with good coverage of four variables representing agricultural P inputs and transport mechanisms taken
from commonly-available geospatial datasets.We use a genetic algorithm to select 11 sites with the highest pos-
sible QI and compare these, post-hoc, to our sites. This approach reduces subjectivity in site selection, considers
practical constraints and easily allows for site reselection if necessary. This site selection approach can easily be
adapted to different landscapes and study goals, as we provide an algorithm and computer code to reproduce
our approach elsewhere.
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1. Introduction

Environmental studies are frequently concernedwith examining the
effect of specific variables (e.g., anthropogenic stressors) across a large,
heterogeneous landscape, which may modify the effects of the vari-
ables. Often, a large region is of interest, but since it is frequently im-
practical to conduct detailed studies on the entire region, the selection
of a small number of sites to represent the region is required. In many
cases, sites are chosen primarily for logistical reasons (e.g. convenient
access, existing datasets). However, since it is unlikely that a small num-
ber of randomly selected sites will cover the range in the variables of in-
terest (Royall, 1970), systematic approaches to the selection of these
representative sites are required (Kyllmar et al., 2014; Sharpley et al.,
2015), and several approaches for a variety of study types have been de-
veloped (Coote et al., 1982; Danz et al., 2005; Fealy et al., 2010; Yates
and Bailey, 2010).

Monitoring projects are often designed to capture the largest possi-
ble gradient across a variety of potential stressors. For example, sites
were selected for a monitoring project in Laurentian Great Lakes (LGL)
coastal zones using 201 geospatial datasets in six stressor categories
and one soil category (Danz et al., 2005). The categorieswere previously
identified as potential stressors in Great Lakes ecosystems
(Environment Canada and United States EPA, 2003), though the stress
gradients were not known a priori. Data in each category were com-
pressed using principal components analysis (PCA). Sites were then
grouped by performing cluster analysis on PCA values, with study sites
selected from each cluster. Some approaches for designing monitoring
projects focus on removing redundant sites; this is only useful when
variables of interest have already been measured (e.g. Alameddine et
al., 2013).

Field projects comparing “reference” and “impacted” sites may re-
quire a different kind of selection method for reference sites. Yates
and Bailey (2010) demonstrate a selection process for reference head-
water catchments in southern Ontario. Potential headwater sites were
divided into soil type categories, and a gradient of human impact was
calculated by linearly combining indicators of human impact (e.g. field
tile drainage, septic systems, livestock) with PCA. Reference sites for
each soil class were selected from watersheds in the lowest 25% of the
impact gradient.

Site selection for field studies with specific hypotheses regarding re-
lationships between variables (e.g. potential drivers) and responses of
interest may focus on only a few variables and aim for a good range in
these variables. These variables may be targeted for study a priori if
they have been previously identified as relevant, or their relationships
to environmental responses is of interest. For example, the Pollution
from Land Use Activities Reference Group (PLUARG) study in the
1970s attempted to represent a large area (southern Ontario, Canada)
with 11 small agriculturalwatersheds (b100km2)with the aimof quan-
tifying and predicting sources of agricultural nutrients to the LGL. First,
the agricultural region of interest was classified into five major soil
types representing a gradient in the potential to transport nutrients
and other pollutants. Next, a gradient of nutrient inputs (N and P) was
determined by estimating nutrient contributions from manure produc-
tion and fertilizer inputs (inferred from crop types). These two gradi-
ents were overlaid graphically and from them, 21 zones of similar
combination of these two gradients were identified. Eleven headwater
sites were then selected to cover a range of these 21 zones (Coote et
al., 1978, 1982). As computerized geospatial analysis was not yet avail-
able, considerable professional judgement was used to weigh inputs,
determine the gradients and to define the resultant zones (Coote,
pers. comm.).

In a more recent study, Fealy et al. (2010) used amulti-criteria deci-
sion analysis (MCDA) approach to select agricultural watersheds as part
of the Irish Agricultural Catchments Program. They first divided agricul-
tural catchments into grassland and cropland categories. Within these
two categories, several criteria deemed to be important to the potential

for nutrient loss potential (e.g. % area in forage, livestock housing den-
sity) were measured and relative weights were assigned. These catego-
ries and their weights were determined by expert judgement and
stakeholder engagement, which Fealy et al. (2010) described as a dis-
tinct advantage of the MCDA approach.

While these approaches have certain strengths, none provides a
mathematical check on the distribution of sites, or attempt to avoid sta-
tistical leveraging bymaking sure sites are evenly distributed. Addition-
ally, some methods include subjective weighting of input variables.
Therefore, we developed a site selection process that combines the
strengths of previous approaches for selectingmonitoring and reference
sites - the use of geospatial datasets to capture the regional range of var-
iables of interest, reduction of expert judgement in ranking these vari-
ables - with a novel Quality Index (QI) value, which assesses the
selected study sites' coverage of a range of interest (here, the range in
a larger region) and the distribution of sites. Becausewe illustrate all po-
tential sites in mathematical variable space, selecting new sites, if any
are rejected for logistical reasons, is also easy with our approach.

We illustrate the method with a case study on phosphorus (P) ex-
port and cycling in small, agricultural watersheds in southern Ontario,
Canada. We represent a large region (~110,000 km2) with 11 study
sites using four variables of interest relating to P sources (soil P and P in-
puts via fertilizer andmanure) and P transport (runoff, soil texture, and
slope). The study aims to examine relationships among agricultural ac-
tivity, landscape variables and phosphorus (P) export. While P export
from agricultural watersheds has been well-studied over several de-
cades, the drivers of P export, and therefore appropriate management
methods, are not well understood in many landscapes because of the
complexity of P sources, storage, transport, and transformation in agri-
cultural landscapes (Sharpley, 2016; Withers et al., 2017; Withers and
Jarvie, 2008). P export results from these watersheds are not yet col-
lected and will be reported elsewhere. The method has wider applica-
bility to any studies where gradients (such as source and transport) of
independent variables such as stressors are hypothesized a priori to be
important drivers of a measure or outcome of interest.

2. Methods

2.1. Site selection approach and Quality Index

Our overall approach was to describe a large regional area (R) on a
coarse spatial scale (i.e. divide it into subregions, Rs) using at least two
independent variables of interest, and then describe many potential
study sites (“candidate sites”, population S) in the same way, mapping
them both in mathematical space. We then selected n candidate sites
(Ai) from S so that the n sites selected can represent the region R from
which S was chosen (Fig. 1). We illustrate the method with a case
study described in Section 2.4. Our specific procedure is as follows:

1. Break the region R down into subregions (Rs) and select potential
study sites (S).

2. Map the population of subregions Rs and sites S into a mathematical
space, the axes of which are defined by critical variables that repre-
sent the population. Selecting the critical variables inevitably in-
volves some expert judgement, though the critical variables may be
chosen to complement the hypothesis of thefield study.We illustrate
the method with four variables of interest (W, X, Y, Z); extending or
contracting our method into spaces of arbitrary dimensionality to
meet the needs of other projects is trivial. Once the candidate sites
have been mapped into a mathematical space, we posit that
representing the region R from which S was taken may be
approached as a problem of geometrically representing the mathe-
matical space defined, in our case, by X and Y.

3. We define the critical geometric attributes of the space in X and Y
overwhich all of the candidate sitesAi co-vary. Specifically, we define
the Range of the candidate sites Ai:
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