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H I G H L I G H T S

• Remote sensing covariates improved
the estimation of SOC stocks.

• Prediction accuracy of tree-based
models was superior to support vector
machine.

• Digital soil mapping for SOC was practi-
cal and cost-effective in semi-arid
rangelands.

• Fractional cover data influenced SOC
stock at the soil surface.
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Efficient and effective modelling methods to assess soil organic carbon (SOC) stock are central in understanding
the global carbon cycle and informing related land management decisions. However, mapping SOC stocks in
semi-arid rangelands is challenging due to the lack of data and poor spatial coverage. The use of remote sensing
data to provide an indirect measurement of SOC to inform digital soil mapping has the potential to provide more
reliable and cost-effective estimates of SOC compared with field-based, direct measurement. Despite this poten-
tial, the role of remote sensing data in improving the knowledge of soil information in semi-arid rangelands has
not been fully explored. This study firstly investigated the use of high spatial resolution satellite data (seasonal
fractional cover data; SFC) togetherwith elevation, lithology, climatic data and observed soil data tomap the spa-
tial distribution of SOC at two soil depths (0–5 cm and 0–30 cm) in semi-arid rangelands of eastern Australia.
Overall,model performance statistics showed that random forest (RF) and boosted regression trees (BRT)models
performed better than support vector machine (SVM). The models obtainedmoderate results with R2 of 0.32 for
SOC stock at 0–5 cm and 0.44 at 0–30 cm, RMSE of 3.51 Mg C ha−1 at 0–5 cm and 9.16 Mg C ha−1 at 0–30 cm
without considering SFC covariates. In contrast, by including SFC, themodel accuracy for predicting SOC stock im-
proved by 7.4–12.7% at 0–5 cm, and by 2.8–5.9% at 0–30 cm, highlighting the importance of including SFC to en-
hance the performance of the three modelling techniques. Furthermore, our models produced a more accurate
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and higher resolution digital SOC stockmap comparedwith other availablemapping products for the region. The
data and high-resolution maps from this study can be used for future soil carbon assessment and monitoring.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Globally, rangelands account for approximately half of the world's
land mass, providing a key role in the mitigation of climate change.
The extensive areas occupied by rangelands can potentially store huge
amounts of carbon both in biomass and soil organic matter (Bikila
et al., 2016). Australian rangelands extend across low rainfall environ-
ments accounting for approximately 81% of national land area (http://
www.environment.gov.au/land/rangelands). It is estimated that
Australia's rangeland soils store between 34 and 48 Gt of carbon,
representing a sequestration potential of 78 Mt C per year (Keating
et al., 2009). Soil organic carbon (SOC) is also recognized as themost im-
portant indicator of soil fertility and playing a vital role in a range of soil
processes (Schillaci et al., 2017a).While the accurate assessment of SOC
stock is essential to enhance this resource, quantifying and mapping
SOC stocks in the rangelands is challenging due to low levels of SOC
and the inherently patchy spatial and temporal patterns of vegetation
and soil resources (Waters et al., 2015). Using direct measurement
(field survey including soil sampling and laboratory analyses) to deter-
mine SOC stocks is both time consuming and costly (Bartholomeus
et al., 2011), and prohibitive at large scales (regional, national or global).

Digital soil mapping (DSM) techniques are a useful tool to reduce
sampling and analytical costs while still obtaining reliable results
(Jeong et al., 2017). DSM is the procedure of creating spatial soil infor-
mation based on mathematical or statistical relationships between
field soil observations and related environmental covariates or factors
(e.g. climate, vegetation, relief, parentmaterial and time) to understand
spatial and temporal variation in soil type and other soil properties in
the form of rasters of prediction (Camera et al., 2017; Jeong et al.,
2017; Lagacherie et al., 2006; Malone et al., 2016; Minasny and
McBratney, 2016). In DSM, these environmental variables can be re-
trieved from available digital elevation model (DEM), readily accessible
remote sensing data and other data sources (such as climate data). The
past fewdecades have seen the growth of DSM as a sub-discipline of soil
science, experiencing a continuous expansion mainly due to its in-
creased efficiency (Kempen et al., 2012) and accuracy (Lorenzetti
et al., 2015) compared to conventional field soil mapping techniques.
With continual growth in computational capacities, the great explosion
of ‘Big Data’ involved with the development of data-mining algorithms,
geographic information systems, and the increased availability of spatial
data (DEM and satellite imagery) (Minasny andMcBratney, 2016), DSM
is likely to play an increasingly important role in the future monitoring
of changes in soil properties and characteristics.

Recently, DSM has been successfully applied to map SOC stocks
under a range of environments (Bonfatti et al., 2016; Gray et al., 2015;
Ottoy et al., 2017; Schillaci et al., 2017a; Wang et al., 2017; Were et al.,
2015; Yang et al., 2016). These advances in DSM of SOC mainly result
from the development of machine learning techniques and the avail-
ability of high-quality covariates. The success of machine learning in
DSM is related to several advantages over traditional soil survey.
These advantages have been summarized as: 1) DSM is easy to update
because predicting models can be stored and rerun when new data be-
come available; 2) Different models of spatial variation can be chosen
due to the availability of computing power to process large data sets;
3) The proper use of datamining tools and progress in geographic infor-
mation systems results in predictions with quantified uncertainty
(Kempen et al., 2012; Minasny and McBratney, 2016).

In Australia, a recent project has produced the Soil and Landscape
Grid of Australia (SLGA) (http://www.clw.csiro.au/aclep/
soilandlandscapegrid/index.html) (Grundy et al., 2015; Viscarra

Rossel et al., 2015) which is based on recent digital soil mapping
methods and integrates historical soil information and novel spatial
modelling to generate nationwide digital maps of soil attributes in-
cluding SOC (3 arc sec, approximately 90 m, resolution) (Grundy
et al., 2015; Viscarra Rossel et al., 2014). However, the SLGA's accu-
racy varies between soil depths and soil textures across Australia.
For example, the accuracy of SLGA products was higher in clay soil
(R2 = 0.53) than that in silt soil (R2 = 0.46) at 0–5 cm. In addition,
the range in time since the surveyed soil data were collected may re-
sult in poor estimates of the current status of attributes that are dy-
namic and responsive to land management practices, such as SOC
(Grundy et al., 2015). Similarly, DSMs (100 m resolution) have
been produced for key soil properties over New SouthWales in east-
ern Australia (OEH, 2017) derived through quantitative modelling
techniques (mainly multiple linear regressions) that are based on re-
lationships between soil attributes and different environmental var-
iables. These existing map products were produced at a national or
state level, so they may not provide reliable information on SOC
stocks down to the local or farm levels. This information is funda-
mental to monitor changes in the SOC stocks as a consequence of
land management and is not available for the semi-arid rangelands
of eastern Australia.

Accurate predictions of SOC stocks at smaller spatial scales are cen-
tral in assessing the carbon sink capacity of soils, temporal changes
due to seasonal conditions as well as the influence of management
(Wang et al., 2017). Remote sensing data have gained attention in the
past few decades as a promising secondary data source for improving
DSM due to their high accessibility, resolution and availability at a
range of scales. Forkuor et al. (2017) summarized the advantages of
soil data sources derived from remote sensing as (1) contain extractable
soil information, e.g. spectral reflectance, (2) have large spatial coverage
and therefore permitmapping of inaccessible areas, (3) produce consis-
tent and comprehensive data both in time and space and (4) provide
possibilities of supplementing or at least reducing traditional labour-
intensive soil sampling in soil surveys. Based on these advantages, nu-
merous studies have explored the use of remote sensing datawith vary-
ing spatial, temporal and spectral characteristics in digital soil mapping
(Forkuor et al., 2017; Rudiyanto et al., 2016; Schillaci et al., 2017a,b;
Wang et al., 2017; Yang et al., 2015). For example, Schillaci et al.
(2017a) found that the integration of remote sensing with other envi-
ronmental predictors increased the predictive ability compared to
models built without remote sensing covariates. Previous studies in
the semi-arid rangelands have shown clear relationships between
ground cover (perennial grass and litter cover) and SOC stock (Orgill
et al., 2017b; Waters et al., 2015, 2016). These relationships indicate
that suitable satellite-derived covariates such as seasonal fractional
cover (SFC) data may be useful in the estimation of SOC stocks in
these semi-arid environments. However, the efficacy of SFC is improv-
ing prediction of SOC in semi-arid rangelands has not been tested.

The aim of the present study was to determine a reliable method for
mapping the SOC stocks in the semi-arid rangelands of eastern Australia
through different machine learning techniques using a set of environ-
mental covariates obtained from remote sensing, and specifically to in-
vestigate whether inclusion of SFC improves prediction of SOC. We
compared the influence of two groups of predictor variables onmachine
learning model performance in the study area; (1) 12 covariates
(referred to as data set 1) including parent material, relief, climate and
radiometric variables that represented a large suite of potentially useful
covariates, (2) the covariates in data set 1 plus 16 additional covariates
(annual seasonal fractional ground cover; mean value of Band 1 (bare
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