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ABSTRACT

Studies of environmental processes exhibit spatial variation within data sets. The ability to derive predictions of
risk from field data is a critical path forward in understanding the data and applying the information to land and
resource management. Thanks to recent advances in predictive modeling, open source software, and computing,
the power to do this is within grasp. This article provides an example of how we predicted relative trace element
pollution risk from roads across a region by combining site specific trace element data in soils with regional land
cover and planning information in a predictive model framework. In the Kenai Peninsula of Alaska, we sampled
36 sites (191 soil samples) adjacent to roads for trace elements. We then combined this site specific data with
freely-available land cover and urban planning data to derive a predictive model of landscape scale environmen-
tal risk. We used six different model algorithms to analyze the dataset, comparing these in terms of their predic-
tive abilities and the variables identified as important. Based on comparable predictive abilities (mean R? from 30
to 35% and mean root mean square error from 65 to 68%), we averaged all six model outputs to predict relative
levels of trace element deposition in soils—given the road surface, traffic volume, sample distance from the road,
land cover category, and impervious surface percentage. Mapped predictions of environmental risk from toxic
trace element pollution can show land managers and transportation planners where to prioritize road renewal
or maintenance by each road segment's relative environmental and human health risk.
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1. Introduction

Roads cause ecological impacts due to soil and water pollution
(Backstrém et al., 2003; Dorchin and Shanas, 2010; Krein and Schorer,
2000; Mangani et al., 2005; Sutherland and Tolosa, 2001), wildlife mor-
tality from roadkill (Gibbs and Shriver, 2005; Lode, 2000; Mazerolle,
2004) and their role as barriers to organismal movement across ecosys-
tems, leading to habitat fragmentation (Forman and Deblinger, 2000;
Lode, 2000; Trombulak and Frissell, 2000). In addition, roads and asso-
ciated airborne pollutants may harm human health (Kampa and
Castanas, 2008). Factors driving the amount and type of road pollution
include traffic volume (Kayhanian et al., 2002), road surface materials
(Edvardsson and Magnusson, 2009; Norman and Johansson, 2006),
driving conditions such as road grade and need for acceleration or brak-
ing (Egodawatta and Goonetilleke, 2008; Ragione and Giovanni, 2016),
climate (Memon and Butler, 2005) and activities associated with cli-
mate like use of studded tires (Hussein et al., 2008), traction sand
(Kupiainen et al., 2003), and salt (Corsi et al., 2010; Novotny et al.,
2008). Characteristics of adjacent environments like galvanized steel
structures (e.g., bridges or guardrails) or agricultural land use may con-
tribute trace elements to road corridors (Blok, 2005; Wei and Yang,
2010). Trace elements originating from traffic exhaust or from the
road bed itself may migrate from the roadway into adjacent air, water,
and soils, potentially contaminating areas adjacent to roadways with
levels of trace elements exceeding human health or ecotoxicological
thresholds.

Road maintenance options to minimize risk from road-based trace
element pollution include reducing road surface wear (e.g., by paving
(Kupiainen et al., 2003) or applying dust suppressants (Edvardsson
and Magnusson, 2009), removing dust by sweeping or washing streets
(Vaze and Chiew, 2002; Westerlund and Viklander, 2006), slowing traf-
fic (Hussein et al., 2008; Williams et al., 2008), or engineering the road
bed or shoulder to retain pollutants in adjacent soils (Piguet et al.,
2008). Most municipal entities responsible for road maintenance have
limited budgets, so an ability to analyze and predict where road mainte-
nance is most needed to protect the environment and human health
from trace element pollution will help municipalities prioritize road
maintenance in areas where these activities have the greatest social
and environmental benefit.

Another core question for land managers considering new road con-
struction projects in remote areas is whether paved or gravel roads add
more trace element pollution to adjacent environments; but there is
disagreement in the literature on this topic (Claiborn et al., 1995;
Hussein et al., 2008; Kupiainen et al., 2003; Williams et al., 2008). The
basis of disparate findings in different studies probably reflects environ-
mental heterogeneity and complexity in the interactions among factors
causing the trace element deposition. For example, paved roads often
carry more vehicles moving at higher speeds than unpaved roads—mak-
ing it hard to disentangle the individual effects of road surface, road traf-
fic, and vehicle velocity. Moreover, different land use in adjacent areas is
likely to influence the sources of pollutants and the width of the trace
element deposition zone (Pocock and Lawrence, 2005).

Statistical models are integral to modern understanding, prediction,
and management of complex phenomena. Current modeling tech-
niques are improving predictions of outcomes driven by interrelated
and nonlinear variables. The field of machine learning is a branch of
computer science and computational statistics that uses a variety of dif-
ferent mathematical or grouping algorithms to generate predictions
from data. Machine learning techniques can solve regression (numerical
prediction) or classification (binomial or multinomial outcome) prob-
lems. When the user provides the model already classified training
data, this is considered supervised machine learning. Though there
has been substantial work modeling road pollution chemistry (Lin et
al.,, 2008) and contaminant fate and transport (Murakami et al., 2004;
Omstedt et al., 2005; Ragione and Giovanni, 2016), to our knowledge
no study has used supervised machine learning based predictive

analytics to better understand and manage road pollution risk, particu-
larly with models that explicitly account for space in the predictions.

Here we present such an analysis. To perform it, we acquired site
specific soil chemistry measurements of trace element pollutants adja-
cent to paved and gravel roads on the Kenai Peninsula of Alaska. We
then combined these with regional transportation planning information
available for this road network and two different remotely sensed na-
tional land cover datasets (land cover category and percent impervious
surface). We hypothesized that more traffic and impervious surface
around the sample would increase soil contamination and that land
cover at the point of the sample would affect trace element concentra-
tions in soil, for example dense forest cover may filter trace elements
from auto exhaust or developed land cover may contribute trace ele-
ments to the road corridor. We compared six different model frame-
works to understand these relationships and averaged their outputs to
predict trace element deposition at over 50,000 randomly placed points
within 80 m of mapped roads across this landscape. Ultimately these
methods allowed us to make regional maps depicting relative trace ele-
ment pollution risk by each road segment in the Kenai Peninsula Bor-
ough and provide the predictions as a data file so that land managers
can summarize the information themselves as needed.

2. Materials and methods
2.1. Site selection

The primary study goals were to understand the effects of roads on
the incidence of malformed amphibians in nearby sensitive habitats
(Hayden et al., 2015; Reeves et al., 2011, 2010, 2008), so 36 sites on
the Kenai Peninsula of Alaska were chosen using a stratified random
sampling design. The Kenai Peninsula Borough of Alaska is a 6.4 million
ha area (Fig. 1) with a human population of approximately 55,400. We
stratified first on wetland presence (to meet other study objectives),
then on road surface (paved or gravel) because metal fate and transport
mechanisms may differ between gravel and paved roads. We also di-
vided the study area into 5 spatial sectors to ensure interspersion of
sites on the landscape. These sectors varied in road density and traffic
as well as land use and degree of urbanization.

Within the chosen area (Fig. 1), we included all roads classified as a
street or main road on the Kenai Peninsula Borough's (KPB) GIS “Roads”
layer in 2010 (available: http://www.kpb.us/gis-dept/kpb-data-
downloads/transportation). We created a 1 km buffer around the
streets and main roads in this layer (which has since been updated to in-
clude more detail about road categories) and chose possible sites only
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Fig. 1. Map of Alaska with study area (red box), Kenai Peninsula Borough Roads, and Study
Sites where soil samples were collected (red stars).
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