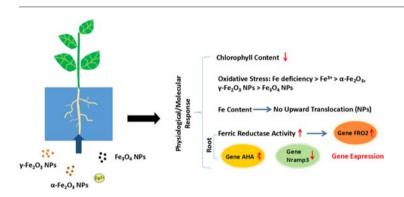
ELSEVIER

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Interaction mechanisms between α -Fe₂O₃, γ -Fe₂O₃ and Fe₃O₄ nanoparticles and *Citrus maxima* seedlings


Junli Li ^{a,*}, Jing Hu ^a, Lian Xiao ^a, Yunqiang Wang ^b, Xilong Wang ^{c,*}

- ^a School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- ^b Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China
- ^c Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China

HIGHLIGHTS

- Chloroplast in plant leaves is very sensitive to iron oxide NPs.
- Iron oxide NPs are not directly bioavailable to Citrus maxima seedlings.
- Both α and γ -Fe₂O₃ NPs can enter plant root cells but through different pathways.
- The α and γ -Fe₂O₃ NPs taken up by roots are not readily translocated to shoots.
- Plants exposed to 50 mg/L iron oxide NPs or Fe³⁺ are still in iron-deficiency

GRAPHICAL ABSTRACT

Citrus maxima seedlings exhibited dissimilar physiological and molecular responses to different types of iron oxide NPs.

ARTICLE INFO

Article history:
Received 25 October 2017
Received in revised form 22 December 2017
Accepted 23 December 2017
Available online xxxx

Editor: P Holden

Keywords:
Interaction
Mechanism
Iron oxide nanoparticles
Citrus maxima Seedling
Enzyme activity
Gene expression

ABSTRACT

The interactions between α -Fe₂O₃, γ -Fe₂O₃, and Fe₃O₄ nanoparticles (NPs) and *Citrus maxima* seedlings were examined so as to better understand possible particle applications as an Fe source for crop plants. NPs toxicity to the exposed plant was investigated as well. The α - and γ -Fe₂O₃ NPs were accumulated by plant root cells through diapirism and endocytosis, respectively, but translocation to the shoots was negligible. Analysis of malondialdehyde (MDA), soluble protein content, and antioxidant enzyme activity revealed that Fe deficiency induced strong oxidative stress in *Citrus maxima* seedlings, which followed an order of Fe deficiency > Fe³⁺ > α -Fe₂O₃, γ -Fe₂O₃ NPs > Fe₃O₄ NPs. However, the chlorophyll leaf content of plants exposed to α -Fe₂O₃, γ -Fe₂O₃, Fe₃O₄ NPs and Fe³⁺ were significantly reduced by 31.1%, 14.8%, 18.8% and 22.0%, respectively, relative to the control. Furthermore, RT-PCR analysis revealed no up-regulation of AHA and Nramp3 genes in *Citrus maxima* roots; however, the relative FRO2 gene expression upon exposure to iron oxide NPs was 1.4–2.8-fold higher than the control. Ferric reductase activity was consistently enhanced upon iron oxide NPs exposure. These findings advance understanding of the interaction mechanisms between metal oxide NPs and plants, and provide important knowledge need for the possible application of these materials in agriculture.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Iron (Fe) is an essential micronutrient for plants that is involved in respiration, photosynthesis, nitrate synthesis, nitrogen fixation, DNA

^{*} Corresponding authors.

E-mail addresses: lijunli0424@sina.com (J. Li), xilong@pku.edu.cn (X. Wang).

synthesis and hormone production (Hell and Stephan, 2003). However, Fe can also be toxic when it accumulates to an inappropriately high level; free Fe, including both Fe(II) and Fe(III), can participate in the Fenton reaction and generate cytotoxic hydroxyl radicals (Halliwell and Gutteridge, 1992; Jeong and Connolly, 2009). Although Fe is abundant in the earth's crust, it is present mainly in the insoluble Fe(III) in soils (Briat and Lobreaux, 1997), causing limited bioavailability in many soil types. Iron deficiency is the most widespread micronutrient deficiency to plants, especially for calcareous and alkaline soils, where Fe is nearly insoluble (Klatte et al., 2009). Furthermore, soluble inorganic Fe fertilization provides limited relief due to rapid conversion of Fe to the plantunavailable Fe(III) form (Rengel et al., 1999). Therefore, new approaches need to be developed to alleviate Fe-deficiency in plants. The application of metal oxide nanoparticles (NPs) in a number of areas has been attracting increasing attention due to the unique physicochemical properties of these materials. As one of the most widely explored and applied nanomaterials, iron oxide NPs such as magnetite (Fe_3O_4), hematite (α - Fe_2O_3), and maghemite (γ - Fe_2O_3) have found many biotechnological applications (Ali et al., 2016; Assa et al., 2016; Espinosa et al., 2016). Importantly, Fe released from iron oxide NPs could be a potential nutrition source for plants. Prior to the possible development of nano Fe fertilizers, the interactions between iron oxide NPs and plants must be understood. Although Fe has ferromagnetic characteristics, different iron oxide forms exhibit dissimilar magnetic properties. Both Fe₃O₄ and γ-Fe₂O₃ possess ferromagnetic behavior; the difference is that Fe₃O₄ has Fe²⁺ and Fe³⁺ cations, whereas γ -Fe₂O₃ has only Fe³⁺ cation and vacancies in their sub-lattices (Belin et al., 2002; Kojima and Hanada, 1980; Morales et al., 1997). α-Fe₂O₃ has canted antiferromagnetism (Randrianantoandro et al., 2001), but does not possess periodic vacancies as compared to γ -Fe₂O₃ (Can et al., 2012). Additionally, the crystalline structures of these iron oxides are different; α-Fe₂O₃ has a rhombohedral crystalline structure whereas Fe₃O₄ and γ-Fe₂O₃ have cubic cells (Randrianantoandro et al., 2001). Recently, a number of investigations have reported the uptake, translocation and physiological effects of iron oxide NPs on plants. For example, Marusenko et al. (2013) evaluated the bioavailability of α -Fe₂O₃ NPs to Arabidopsis thaliana and showed that NPs with mean diameter of 40.9 nm (range in 22.3-67.0 nm) could not be taken up by the plant. Rui et al. (2016) observed that γ-Fe₂O₃ NPs increased root length, plant height, biomass, and chlorophyll levels of peanut (Arachis hypogaea) plants, suggesting that this material could be used to replace the traditional Fe fertilizers for peanut cultivation. Ghafariyan et al. (2013) observed that Fe₃O₄ NPs entered the roots of soybean (Glycine max L. Oxley) and were subsequently translocated to the shoots. NPs uptake and translocation increased chlorophyll levels in soybean leaves, but no overt signs of toxicity were noted under the hydroponic growth conditions.

Citrus maxima was selected as a model plant due to its susceptibility to iron deficiency. Iron oxide NPs previously were not only shown to be available to this species but also to enhance plant growth (Ghafariyan et al., 2013; Rui et al., 2016). Importantly, there is limited knowledge regarding the physiological and molecular response of plants to iron oxide NPs; as such, Citrus maxima seedlings were exposed to α -Fe₂O₃, γ -Fe₂O₃, Fe₃O₄ NPs, or Fe³⁺ so as to address this important knowledge gap. Representative physiological parameters such as soluble protein, chlorophyll content, lipid peroxidation, antioxidant enzyme activity, and ferric reductase/Fe content were determined so as to gain understanding of the plant's response to iron oxide NPs. Uptake of iron oxide NPs by plant roots was observed using transmission electron microscopy (TEM). Additionally, the transcriptional modulation of H⁺-ATPase (AHA), ferric-chelate reductase (FRO2) and natural resistanceassociated macrophage protein (Nramp3) and Fe superoxide dismutase (Fe-SOD) were analyzed at the molecular level by real-time polymerase chain reaction (RT-PCR) technique. A systematic analysis of these physiological and biochemical indicators will substantially advance understanding of the interactions between various iron oxide NPs and important crop species.

2. Materials and methods

2.1. Experimental design

The iron oxide NPs tested include α -Fe₂O₃ (99.5%, 30 nm), γ -Fe₂O₃ (99.5%, 20 nm), and Fe₃O₄ (99.5%, 20 nm) NPs. They were purchased from Macklin Inc. (Shanghai, China). The plant seeds were immersed in distilled water for germination in moist perlite at 28 °C. Since iron release from Fe-containing NPs could be a potential nutrition source for plants, the Citrus maxima (C. maxima) seedlings were then transferred to the hydroponic system which contained Hoagland's nutrient solution but was free of iron so as to eliminate confounding interactions related to the NPs effects on plant growth. A blank was included in Hoagland's nutrient solution with no Fe; comparison of the actual samples with the blank may help better understand the interactions between the plant and various iron oxide NPs. After acclimation for one week, C. maxima seedlings were grown in Hoagland's nutrient solution containing 50 mg/L of α -Fe₂O₃, γ -Fe₂O₃, or Fe₃O₄ NPs. The concentration was selected based on that used in previous studies (Li et al., 2016; Li et al., 2013; Hu et al., 2017). To evaluate role of dissolved Fe in plant growth, an ion equivalent (from FeCl₃·6H₂O) of 50 mg/L Fe₂O₃ was also tested. The results were then used to compare the toxic effects of iron oxide NPs at different physiological and molecular levels. Others have similarly evaluated soluble metal salts at the same level as compared to metal oxide NPs (Bandyopadhyay et al., 2015; Zhang et al., 2014). In addition, the plant growth condition was identical to that described elsewhere (Li et al., 2016). After exposure for 20 days, physiological parameters including soluble protein, chlorophyll content, lipid peroxidation, antioxidant enzyme activity and ferric reductase levels were measured.

2.2. Plant response and TEM imaging of plant roots

The malondialdehyde (MDA) content was measured using the thiobarbituric acid method according to Heath and Packer (1968). The soluble protein content was determined using a dying method with Coomasie Brilliant Fluka G-250 as described elsewhere (Ren et al., 2011). The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were measured as described in our recent study (Li et al., 2016). Briefly, crude enzyme was extracted by grinding plant roots (0.3 g) or leaves (0.3 g) in 10 mL of 0.05 M pre-cooling phosphate buffer (pH 7.8). The mixture was then centrifuged at 4000 rpm for 20 min and stored at 4 °C for analysis. SOD activity was measured by the enzyme's ability to inhibit the photochemical reduction of nitrobluetetrazolium (NBT) (Wang et al., 2004); CAT activity was measured by its ability to catalyze the decomposition of H_2O_2 ; POD activity was estimated following the guaiacol colorimetric method (Zhang et al., 1995). Chlorophyll content was determined with a UV-752 N spectrophotometer (Shanghai Precision Scientific Instrument Co., Ltd., China) using 95% ethanol extracts as described in Lichtenthaler (1987), and the activity of ferric reductase was measured using a 2,2-bipyridine colorimetric method (Li et al., 2013). Roots from plants exposed to 50 mg/L α -Fe₂O₃, γ -Fe₂O₃, or Fe₃O₄ NPs were observed using TEM. Samples for TEM imaging were prepared following a standard procedure described elsewhere (Li et al., 2016).

2.3. Metal uptake

At harvest, shoot and root tissues of *C. maxima* seedlings were collected, and the roots were briefly immersed in 1 mM HNO₃ to remove surface adsorbed $\gamma\text{-Fe}_2\text{O}_3$ NPs (Servin et al., 2013). The roots and shoots were then thoroughly rinsed several times with distilled water and were dried for 48 h at 60 °C in a drying oven. One hundred milligrams of the oven-dried shoot or root tissues were separately digested in 3 mL of concentrated HNO₃ for 1 h at 100 °C on a hot block. After cooling down to ambient temperature, 0.5 mL of 30% $H_2\text{O}_2$ was added to the

Download English Version:

https://daneshyari.com/en/article/8861172

Download Persian Version:

https://daneshyari.com/article/8861172

<u>Daneshyari.com</u>