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A B S T R A C T

Traffic-related air pollutant emissions have become a global environmental problem, especially in urban areas.
The estimation of pollutant emissions is based on complex models that require the use of detailed travel-activity
data, which is often unavailable and in particular, in developing countries. In order to overcome this issue, an
alternative multiple-input–multiple-output general regression neural network model, based on basic socio-
economic and transport related indicators, is proposed for the simultaneous prediction of sulphur oxides (SOx),
nitrogen oxides (NOx), ammonia (NH3), non-methane volatile organic compounds (NMVOC) and particulate
matter emissions at the national level. The best model, created using only six inputs, has MAPE (mean absolute
percentage error) values on testing in the range of 12–15% for all studied pollutants, except NMVOC
(MAPE = 21%). The obtained predictions for SOx, NH3 and PM10 emissions were in good agreement with the
reported emissions (R2 ≥ 0.93), while the predictions for NOx and NMVOC are somewhat less accurate
(R2 ≈ 0.85). It can be concluded that the presented ANN approach can offer a simple and relatively accurate
alternative method for the estimation of traffic-related air pollutant emissions.

1. Introduction

In last decades, due to rapid motorization and the sheer growth of
the number of vehicles, traffic-related emissions in developing coun-
tries have been growing strongly causing air quality problems, espe-
cially in urban areas (Liaquat et al., 2010). Motor vehicles emit, among
other pollutants, sulphur oxides (SOx), nitrogen oxides (NOx), am-
monia (NH3), non-methane volatile organic compounds (NMVOC) and
particulate matter (PM), and represent a significant source of air pol-
lution. Traffic-related pollutants, such as NO2 and PM, are of particular
concern to health, while other gaseous pollutants contribute to global
warming, atmospheric acidification and the formation of secondary
pollutants (Xia and Shao, 2005; Kousoulidou et al., 2008; Amato et al.,
2014). Also, traffic-related air pollutants have received more concerns
in the recent years because of its adverse health effect of early life ex-
posure during pregnancy (Deng et al., 2016; Schultz et al., 2017; Song
et al., 2017).

The quantification of road transport emissions is required in order
to assess population exposure and impact on air quality (HEI Panel on
the Health Effects of Traffic-Related Air Pollution, 2010). The devel-
opment of traffic-related emission inventories is based on complex

emissions models, e.g. EPA MOVES2014 (Motor Vehicle Emission Si-
mulator) and EEA COPERT4 (Computer Programme to calculate
Emissions from Road Transport), which require the use of detailed
travel-activity data, such as types of vehicles, vehicle-miles traveled,
and number of trips. Furthermore, the transferability and applicability
of emission factors (EFs) investigated in the laboratory to real-world
traffic conditions seems to be problematic in many cases (Corsmeier
et al., 2005), yielding substantial uncertainties and limitations in the
resulting emissions estimates (NARSTO, 2005). Also, EF values depend
on traveling behavior and driving conditions, and can vary between
different locations within the same country (Berkowicz et al., 2006;
Davison et al., 2015; Reyna et al., 2015). In addition, road transport EF
databases, developed for the USA and EU countries, often are not
transferable to other countries, and substantial work is required in
order to obtain suitable EFs.

Since the available transport data for developing countries is much
less representative and reliable, and the variation in vehicle technology
and driving conditions is much larger, Uherek et al. (2010) have as-
sumed up to three times higher uncertainty for each pollutant in
comparison with OECD members, achieving about 30–40% for SO2 and
NOx, 60% for NMVOC and 75% for PM emissions.
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In recent years, non-linear statistical modeling techniques, mainly
artificial neural networks (ANNs), have arisen as an alternative ap-
proach for the estimation of total national air pollutant emissions
(Antanasijević et al., 2013, 2014; Stamenković et al., 2015, 2016,
2017). Those studies demonstrated that ANN models that use widely
available socioeconomic and sustainability indicators as inputs can
produce emission estimates with satisfactory accuracy. Concerning that
those models can be applied only for the estimation of total national
emissions, this methodology has been extended for the prediction of
sectoral air pollutant emissions, e.g. energy related GHG emissions
(Antanasijević et al., 2015) and ammonia emission from field-applied
manure (Lim et al., 2007). In the transportation sector, the use of ANNs
was limited to the estimation of exhaust emissions of gasoline engine
(Sayin et al., 2007) or certain types of vehicles, e.g. Mudgal et al.,
(2011) predicted the emissions of five pollutants from biodiesel fueled
transit buses using separate ANN models. The simplicity and robustness
of ANN methodology is especially useful in cases when the emission
inventories methodology cannot be applied because of a lack of data.

The multi-input-single-output (MISO) and multiple-input–multiple-
output (MIMO) ANN architectures are two basic structures that have
been frequently reported in the literature. Concerning that MIMO ANN
architecture simplifies the ANN-based model development, it has been
used for the prediction of various scientific and engineering fields, e.g.
energy related analysis (Gareta et al., 2006; Kumara et al., 2013; An
et al., 2013), flood forecasting (Chang et al., 2007), meteorological
parameters prediction (Raza and Jothiprakash, 2014), physical and
chemical properties prediction (Ghaedi, 2015), etc.

The aim of this work is to present the development of a MIMO ANN
model for simultaneous prediction of five traffic-related pollutants
(SOx, NOx, NH3, NMVOC and PM10). All studied pollutants came from
the same source (traffic), thus following the parsimony principle a de-
sired level of accuracy can be achieved using a single (MIMO) model
with as few inputs as possible.

2. Materials and methods

In this section, a description of data sources for traffic emission is
given, along with its statistics and correlation analysis. The same in-
formation is then presented for the selected inputs, together with a brief
overview of GRNN architecture used for the creation of MIMO model.

2.1. Traffic emission data

The road transport emission data for SOx, NOx, NH3, NMVOC and
particulates with a diameter< 10 μm (PM10) were obtained from the
European Environment Agency (EEA) through the Eurostat Air
Pollution Database (Eurostat, 2015). This Air Pollution Database was
created using annual reports under the Convention on Long-range
Transboundary Air Pollution (LRTAP Convention). The emission data
covers 26 European countries with a combined population of more than
500 million people and a period spanning nine years (2005–2013).
Traffic emissions are expressed in kg per capita in order to allow
comparison of countries of different sizes. Available data is split into
two datasets (with the ratio of cca. 4:1): the training set, which com-
prised the data from 2005 to 2011 and was used for the development of
the model, and the test set that includes the remaining data (22%) from
2012 to 2013. In the studied European countries (see Table S1 in
Supplementary material) significantly lower emissions per capita
(< 1 kg pc) have been reported for SOx and NH3, while other pollu-
tants, e.g. NOx, are emitted up to 18 kg pc. Descriptive statistics (mean,
max, min and range) for each pollutant and each dataset are presented
in Table 1. A notable decrease of emissions of SOx, NOx and NMVOC
between the periods of the training and test datasets can be observed.

The correlation analysis results (Table 2) show that the mutual
correlation between the outputs is low (r ≤ 0.55), hence the simulta-
neous prediction of uncorrelated outputs presented in this case further

increases the complexity of ANN learning.

2.2. Input data

Inputs were selected with a general aim to obtain a simple, robust
and widely applicable model. Therefore, only basic socioeconomic and
transport related indicators were utilized for the development of the
model. Motorization rate (Mrate), Age of passengers cars (APC) and
Final energy consumption in transport (FECtr) were selected because
they provide information related to the number, age and use of ve-
hicles. Gross domestic product (GDP) was also used because of the re-
lationship between environmental quality and economic development
(Kuznets curve) (Kuznets, 1955). Considering that traffic-related emis-
sions depend on driving conditions, the urban population indicator
(UP), which refers to people living in urban areas, was taken into ac-
count as well. Since several studies have reported that residential
density has an effect on transport emissions (Brownstone and Golob,
2009; Hong and Shen, 2013), the population density (PD) was also used
as model input. Finally, in order to cover the average distance of a
round work trip, job density (JD) was calculated by multiplying PD
with the employment rate. Apart from APC, which is calculated as
presented in our previous study (Antanasijević et al., 2014), and UP
that is acquired from World Bank, all other inputs were obtained from
Eurostat. Descriptive statistics of selected inputs are presented in
Table 3.

As in the case of the model outputs, the correlation analysis was
used in order to quantify mutual correlation among the selected inputs.
In contrast to the correlation of outputs, where high mutual correlation
is useful, correlated input data often introduces confusion during the
ANN learning process (Abdul-Wahab et al., 2005).

As can be seen in Table 4, besides the JD and PD which are perfectly
correlated, the average mutual correlation of other inputs is low
(rmean = 0.39 and r < 0.80). In order to determine the particular
significance of JD and PD on the performance of the model, two se-
parate GRNN models with six input parameters were created.

Table 1
Descriptive statistics for pollutants and datasets.

Output
variables

Statistics Training data
(n = 182)

Test data
(n = 52)

Reduction
[%]

SOx [kg pc] Mean 0.052 0.012 77
St. dev. 0.133 0.008
Range 0.004–1.004 0.004–0.051 95

NOx [kg pc] Mean 8.732 6.818 22
St. dev. 2.299 1.728
Range 3.945–17.895 3.443–11.733 41

NH3 [kg pc] Mean 0.207 0.149 28
St. dev. 0.127 0.079
Range 0.019–0.600 0.019–0.292 53

NMVOC [kg
pc]

Mean 2.850 1.770 38
St. dev. 1.201 0.759
Range 0.751–6.697 0.532–3.803 45

PM10 [kg pc] Mean 0.665 0.535 20
St. dev. 0.338 0.305
Range 0.213–2.084 0.220–1.959 7

Table 2
Correlation analysis of output data.

SOx NOx NH3 NMVOC PM10

SOx 1
NOx −0.02 1
NH3 −0.06 0.48 1
NMVOC 0.18 0.30 0.41 1
PM10 0.01 0.44 0.54 0.55 1
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