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A B S T R A C T

Exploring the spatial distribution of air pollutants under future urban planning scenarios is essential as urban
sprawl increases in China. However, existing published prediction models usually forecast pollutant con-
centrations at the station level or estimate spatial distribution of pollutant in a historical perspective. This study
has developed a hybrid Grey-Markov/land use regression (LUR) model (GMLUR) for PM10 concentration pre-
diction under future urban scenarios by employing the forecast of Grey-Markov model as surrogate measure-
ments to calibrate the spatial estimations of LUR model. Taking the agglomeration of Changsha-Zhuzhou-
Xiangtan (CZT) in China as a case, the superiority of GMLUR was tested and spatial distribution of PM10 con-
centrations based on four potential land use scenarios for the year 2020 were predicted. Results show that
GMLUR modelling outperforms LUR modelling with clear lower average relative percentage error (5.13% vs.
24.09%) and root-mean-square error (5.50 μg/m3 vs. 21.31 μg/m3). The economic interest scenario identifies the
largest demands of future built-up (2 306.50 km2) and bare (34.88 km2) areas. Built-up area demands for the
business as usual scenario, resource-conserving scenario, and ecological interest scenario are 362.67, 1 042.22,
and 1 014.70 km2, respectively. Correspondingly, the economic interest scenario identifies the severest PM10

pollution with the highest mean predicted concentration of 53.78 μg/m3 and the largest percent (19.43%) of
area exceeding the Level 2 value (70 μg/m3) of Chinese National Ambient Air Quality Standard (CNAAQS); these
are significantly higher than those of the business as usual scenario (49.63 μg/m3, 6.28%). The resource-con-
serving scenario (46.79 μg/m3) and ecological interest scenario (46.76 μg/m3) are cleaner with no area ex-
ceeding the Level 2 value of CNAAQS. It can be concluded that GMLUR modelling provides a feasible way to
evaluate the potential outcome of future urban planning strategies in the perspective of air pollution.

1. Introduction

Air pollution, especially particulate matter, has been associated
with numerous adverse effects on human health in urban areas, in-
cluding increased mortality and morbidity from respiratory, lung, and
cardiopulmonary cancer (Zou et al., 2015; Loomis et al., 2013; Beelen
et al., 2014; Wang et al., 2014; Kim et al., 2015). Though concentra-
tions of urban PM10 generally have been declining since the turn of the
21st century (Cheng et al., 2013; Querol et al., 2014), the control of
particulate matter remains an enormous challenge with increasing in-
dustrial production, travel behaviour and construction activities that
follow decades of rapid urbanization (Feng et al., 2017). Understanding
the spatial distribution of PM10 concentrations under varying future
urban planning scenarios is a crucial challenge in designing urban de-
velopment strategies and the prevention of air pollution exposure.

Various approaches to predict the concentrations of urban air

pollutants have been tested. Efforts include temporal forecasting and
spatial mapping. The temporal forecast makes predictions on historical
relationships and trends from data on air pollutant observation. The
commonly used methods are well-tested and have demonstrated pro-
mising forecasting accuracy. This is typified by neural networks, sup-
port vector machine learning, support vector regression, parametric and
nonparametric regression, autoregressive moving (integrated) average
modelling, grey system theory, etc. (Hooyberghs et al., 2005; Hrust
et al., 2009; Kumar and Jain, 2010a; Lotfalipour et al., 2013; Qin et al.,
2014; Wang et al., 2015; Donnelly et al., 2015; Hamzacebi and
Karakurt, 2015). Among these, the grey method has been proved to be
an effective way to make predictions of air pollutants at a relatively
large scale (e.g. annual scale) under conditions with limited data. Yet
forecasting precision of grey method might be affected by the random
fluctuations of the data sequence. The Grey-Markov model, which in-
troduced the Markov chain models to reduce the random fluctuation,
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has been successfully applied in forecasting the electric-power demand,
energy consumption and foreign tourist arrivals (Huang et al., 2007;
Kumar and Jain, 2010b; Sun et al., 2016). It could be an effective way
to improve the accuracy of the grey method for fluctuated air pollution
data sequences. However, an important mutual limitation is that all
those methods are usually conducted at the station level, which is not
able to characterize the patterns of air pollution under future urban
scenario spatially and to evaluate the validity of varied urban planning
strategies.

Spatial mapping, on the other hand, attempts to retrieve the spatial
distribution characteristics of air pollution concentrations based on
physiochemical processes or the relationship between air pollutants and
their potential predictors. Satellite remote sensing (RS), air dispersion
modelling, spatial interpolation, and land use regression (LUR) models
are practical, frequently used solutions (Fang et al., 2016; Zou et al.,
2016a, 2016b, 2017; Apte et al., 2017; Zhai et al., 2018). LUR, which
predicts concentration of air pollutant at a given site based on sur-
rounding land use, meteorology factors and other variables obtained
through geographic information system (GIS), is now a popular method
for air pollution estimation at fine spatial resolutions because of its low
requirement of intensive computations and easy availability of related
data (Henderson et al., 2007; Ross et al., 2007; Hoek et al., 2010; Zou
et al., 2015; Jedynska et al., 2017). Due to the follow-up long-term
epidemiological studies usually have longer periods than monitoring
data used in LUR modelling; few investigations have tried to transfer
the LUR model across time (Mölter et al., 2010; Marcon et al., 2015;
Meng et al., 2015; Zou et al., 2016c). Although the results indicate that
the LUR models were reasonably stable over time and it was possible to
transfer them to different years, these reported studies were performed
retrospectively. The fundamental reason why LUR is seldom used in
future urban scenarios may be the lack of essential inputs of both air
pollution observations and land use distributions.

Fortunately, the simulation of urban land-use change dynamics is
well developed and comprehensive. The methods can be put into the
following groups: cellular automata model, agent-based model, em-
pirical statistical model, and hybrid models (Verburg et al., 2004; Chen
et al., 2008; Santé et al., 2010; Zhang et al., 2013; Basse et al., 2014;
Groeneveld et al., 2017; Liu et al., 2017). Among them, the conversion
of land use and its effects at the small regional extent (CLUE-S) model
can derive empirically quantitative relations between land use change
and driving factors from cross-sectional analysis at multiple scales. This
simulates possible changes under land use scenarios spatially explicit in
small regions at a fine spatial resolution. It has been introduced with
notable accuracy globally, which provides a reliable foundation for
analysis of future urban planning strategies (Verburg et al., 2002).

In this study we developed a hybrid Grey-Markov/LUR (GMLUR)
model to explore the spatial patterns of PM10 concentrations under
future urban scenarios. Research integrates the prediction of station-
based Grey-Markov modelling with the spatial mapping of LUR. The
overall objective is to extend two-dimensional spatial mapping of LUR
into the three-dimensional spatial prediction of GMLUR to achieve the
area-based forecast of PM10 concentrations and to illustrate the po-
tential effect of urban planning scenarios on the temporal evaluation of
the spatial distribution of PM10 concentrations.

2. Framework of GMLUR and supporting methods

The hybrid Grey-Markov/LUR modelling (GMLUR) is a calibrated
LUR method which forecasts PM10 concentrations based on future land
use and PM10 concentrations surrogates. The process can be divided
into four steps. Step 1 develops and validates the base LUR model
(LURH (t)) based on the historical observations of PM10 and various
geographic elements. In Step 2 we obtain the predictions of PM10

concentration for the validation year (LURH predictions (t + n)) by
apply the base LUR model to geographic elements in validation year
(i.e. transfer LURH (t) temporally). The predictions of PM10

concentrations based on Grey-Markov model (Grey-Markov predictions
(t + n)) are then employed to calibrate the LURH predictions (t + n)
through a ratio method. The results (i.e. GMLUR predictions (t + n))
are compared with the measurements to evaluate the reliability of
GMLUR. Step 3 simulates the spatial patterns of land use for re-
presentative scenarios of the target year. In Step 4, to extrapolate PM10

concentrations in cells for the target year, we apply the GMLUR to fu-
ture land use in Step 3 by calibrating predictions of LUR in the target
year (LURF predictions (t + T)) with forecast level of PM10 from Grey-
Markov model (Grey-Markov predictions (t + T)). Details of the entire
procedure are illustrated in Fig. 1. The essential supporting methods
include the following three parts.

2.1. Grey-Markov prediction

The hybrid Grey-Markov/LUR modelling (GMLUR) is a calibrated
LUR method which The Grey-Markov model used here follows Huang
et al. (2007) and can be described as follows:

Step I. The Grey forecasting model GM (1, 1) can be expressed as:
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Step IV. After the determination of the future state transition of a
system, i.e., the determination of Grey-elements Q , Q1j 2j the changing
interval of the forecast value is between Q1j, Q2j. The most probable
forecast value +ŷ (k 1), is considered as the middle value of the
determined state interval, that is

+ = + = + +y k Q Q y k A Bˆ ( 1) 1/2( ) ˆ ( ) 1/2( )i i i i1 2 (3)

Fig. 1. The work flow of GMLUR.
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