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A B S T R A C T

Air quality has significantly improved in Europe over the past few decades. Nonetheless we still find high
concentrations in measurements mainly in specific regions or cities. This dimensional shift, from EU-wide to hot-
spot exceedances, calls for a novel approach to regional air quality management (to complement EU-wide ex-
isting policies). The SHERPA (Screening for High Emission Reduction Potentials on Air quality) modelling tool
was developed in this context. It provides an additional tool to be used in support to regional/local decision
makers responsible for the design of air quality plans. It is therefore important to evaluate the quality of the
SHERPA model, and its behavior in the face of various kinds of uncertainty. Uncertainty and sensitivity analysis
techniques can be used for this purpose. They both reveal the links between assumptions and forecasts, help in-
model simplification and may highlight unexpected relationships between inputs and outputs.

Thus, a policy steered SHERPA module - predicting air quality improvement linked to emission reduction
scenarios - was evaluated by means of (1) uncertainty analysis (UA) to quantify uncertainty in the model output,
and (2) by sensitivity analysis (SA) to identify the most influential input sources of this uncertainty. The results
of this study provide relevant information about the key variables driving the SHERPA output uncertainty, and
advise policy-makers and modellers where to place their efforts for an improved decision-making process.

1. Introduction

Air quality has significantly improved in Europe over the past few
decades (EEA, 2017), but exceedances of the legislative limit values still
persist, mainly for pollutants such as ozone (O3), nitrogen dioxide
(NO2) and particulate matter (PM10 and PM2.5)1. While, in the past
years, these exceedances were wide-spread across Europe, they now
tend to concentrate in specific regions or cities (Kiesewetter et al.,
2015). This new and changed situation calls for a novel approach tai-
lored to local air quality management (to complement EU-wide existing
policies).

There is a long standing tradition of using modelling techniques in
supporting the design of air quality policies. A first set of techniques
consists of three dimensional numerical models that simulate transport,
chemistry, emissions, and deposition in the atmosphere (Mailler et al.,
2016; Pernigotti et al., 2013). Given their complexity and demanding/
onerous requirements (in terms of data preparation, scientific/technical

knowledge and computing time), these models are mainly used for
scientific research. For such models, state-of-the art approaches are
available to compute sensitivity coefficients measuring how the con-
centrations predicted by the model depend on input data and model
parameters. These approaches vary from conceptually simple ones, as
the brute-force (varying the input parameters one by one in separate
model simulations and evaluating the change in predicted concentra-
tions) to more complex, as decoupled direct method and the adjoint
method (Dunker et al., 2002; Sandu et al., 2003; Kelly et al., 2015). All
these methods are usually applied to a fully-fledged air quality model,
to perform its local sensitivity analysis.

In addition to three dimensional numerical models, another set of
approaches has been developed, mainly to deal with the ‘science-to-
policy’ interface. These approaches are referred to as “Integrated
Assessment Models”, as they integrate various dimensions: policy costs,
benefits, etc … in one single approach. In such type of approaches, the
air quality component is not based on the full air quality model
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1 PM: inhalable particles, with diameters that are 10 or 2.5 micrometers.
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previously mentioned (that would be too time consuming to be simu-
lated) but usually it is implemented as a “surrogate” of the full air
quality model. A valuable example of “Integrated Assessment Model” is
the GAINS-EU (Greenhouse Gas - Air Pollution Interactions and
Synergies) integrated assessment model (Amann et al., 2011), which is
based on linear source-receptor relationships to link emissions to con-
centrations, and has frequently been used to choose optimal emission
reductions per country, in order to achieve environmental improve-
ments at a minimum cost. In the last years, given the current situation
marked by regional and/or local (city) hot spots, the EU integrated
assessment modelling tools have also been complemented/aided by
both regional and local approaches. This has been done in recent years
using national versions of GAINS based on finer scale modelling (as in
GAINS-Italy, D'Elia et al., 2009), or with regional tools (as RIAT, the
Regional Integrated Assessment Tool, Carnevale et al., 2012, Carnevale
et al., 2014, Pisoni et al., 2010). These efforts have already supported
the implementation of regional/local plans, but it is important to bear
in mind that their application heavily relies on the availability of de-
tailed local data and of complex scientific/technical know-how, not
always readily available on a local scale.

Recently, the SHERPA (Screening for High Emission Reduction
Potentials on Air quality) modelling tool was developed (Clappier et al.,
2015; Thunis et al., 2016; Pisoni et al., 2017) to provide an alternative
approach. SHERPA, which is based on a “surrogate model” replicating
the behavior of a fully-fledged air quality model, serves as a tool to
support regional/local decision makers responsible for the design of air
quality plans. It is distributed with default data that covers the whole
Europe and enables decision-makers to work on their own regional
domain. It can be used without the need to perform prior complex
scientific/technical tasks. SHERPA supports decision-makers who need
to plan air quality policies by implementing modules such as “source
allocation” (to apportion air pollution in terms of sectors and precursors
of origin), “governance” (to identify the key geographical entities
contributing to the pollution in one specific area), “scenario” (to test the
effect on air quality of a given sector-specific emission abatement sce-
nario). As the tool will be used in the policy arena, it is of utmost im-
portance to evaluate the robustness of the model predictions with re-
gards to various sources of uncertainty.

Uncertainties can be particularly influential in policy context. It is
widely known that model and data are uncertain and that uncertainties
may be very significant. It is therefore important to know how model
outputs, namely potential policy impacts are affected by these un-
certainties. The uncertainty quantification process helps to understand
whether models are “fit for the purpose” and/or apt to be used in the
field of policy making. Complementary to this, sensitivity analysis (SA)
should also be applied. While the uncertainty analysis (UA) aims at
quantifying uncertainty in the model output, sensitivity analysis in-
vestigates the dependency of the model output from various sources of
uncertainty in the model inputs (Saltelli et al., 2008). Sensitivity ana-
lysis is an important ingredient in the quality assurance of models used
for evidence-based policy and, because it reveals the links between
assumptions and predictions, it helps in model simplification (i.e. not
relevant input can be identified) and model calibration (i.e. optimal
parameters setting). It can highlight unexpected relationships between
inputs and outputs, helping to identify regions of the input space which
are responsible for critical values of the output.

In this paper, we perform the uncertainty and sensitivity analysis of
the SHERPA “scenario” module (Thunis et al., 2016). This module al-
lows for the estimation of how concentrations change due to various
given emission-reduction scenarios. It is used as a basis for all SHERPA
modules and is therefore the key element to be tested. As SHERPA is a
model characterized by spatially-varying coefficients and inputs, the
Uncertainty and Sensitivity Analysis (UA-SA) have been performed on a
few selected cities (Helsinki, Constanța, London, and Milan, see Fig. 1),
representative of different meteorological and of varying emission in-
ventory conditions (the same analysis is presented in Albrecht et al.,

2018 on an extended set of cities, showing similar conclusions; so here,
for lack of space, we focus on a smaller number of cities). This analysis
focuses on two main issues: (1) what is the robustness level of the
SHERPA results in terms of uncertainty of the model response (un-
certainty analysis) and (2) how the model output is influenced by each
model input – parameters, precursors, and policy choices (sensitivity
analysis).

In this study we answer these research questions within a Global
Sensitivity Analysis (GSA) variance-based framework. As opposed to
local sensitivity analysis (i.e. with brute-force, decoupled direct and
adjoint methods, previously discussed), GSA measures the relative im-
portance of the model inputs by exploring the entire input space. In
particular, GSA has been carried out using the popular methods de-
scribed in Saltelli et al. (2010). The results provide information about
the key variables driving the SHERPA output uncertainty. This paper is
organized as follows: In Section 2, we briefly introduce the SHERPA
model and the sensitivity analysis method employed to analyze it. In
Section 3, we define the model input uncertainties. Furthermore, we
discuss the results in Section 4 before reaching our conclusion in Sec-
tion 5.

2. Materials and methods

In this chapter the SHERPA model (both formalization and its as-
sumptions/caveats) and the technique used to evaluate uncertainty and
sensitivity analysis are presented.

2.1. The Sherpa model

SHERPA has been developed to provide a speedy modelling ap-
proach to calculate concentration fields resulting from emission re-
duction scenarios, mimicking the behavior of a full Chemical Transport
Model (CTM). CTMs provide pollutant concentration fields that account
for the complex transport, diffusion and chemical processes occurring
in the atmosphere. The aim of SHERPA is to mimic CTMs’ behavior with
a simpler relationship/equation derived from a set of full CTM simu-
lations built with various emission reduction scenarios. This set of
scenarios should be sufficiently varied (in terms of concentration
changes, responses to emission changes) to provide the SHERPA
training phase with sufficient data variability.

In SHERPA, concentration changes due to an emission reduction
scenario are computed on a cell by cell basis according to the following
equation:

∑ ∑= ∀ ∈n NΔC a ΔE , [1, ]celln
p

N

m

N

n,p,m p,m

prec cell

(1)

where the delta concentration ΔCn (change of concentration in com-
parison to the base case) in a receptor grid cell “n” is expressed as a
linear combination of the emissions delta ΔEp,m (variation in emission
when compared to the base case), for each source cell “m” and pollutant
(i.e. precursor) “p”. The an,p,m coefficients act as weighting factors
which apportion the amount of emission variation ΔEp,m of precursor p
stemming from cell m and reaching cell n. As the correlation between
ΔCn (at receptor cell n) and ΔEp,m (at all sources cell m) decreases with
the distance between the cells, it has been assumed that the coefficients
an,p,m in the previous equation can be approximated by the following
distance-function:

= + −a α (1 d )n,p,m n,p n,m
ωn,p

(2)

where dn,m is the distance between cells n and m and the two unknowns
α and ω for each precursor p and each grid cell n were estimated from
CTM simulation results (see Pisoni et al., 2017 for more details).

Even though the previous equations remain the same/unvaried ev-
erywhere in the whole calculation domain, the values of α and ω are
grid-cell specific. The parameter α is related to the amplitude of the
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