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A B S T R A C T

Hazardous gas leak accident has posed a potential threat to human beings. Predicting atmospheric dispersion
and estimating its source become increasingly important in emergency management. Current dispersion pre-
diction and source estimation models cannot satisfy the requirement of emergency management because they
are not equipped with high efficiency and accuracy at the same time. In this paper, we develop a fast and
accurate dispersion prediction and source estimation method based on artificial neural network (ANN), particle
swarm optimization (PSO) and expectation maximization (EM). The novel method uses a large amount of pre-
determined scenarios to train the ANN for dispersion prediction, so that the ANN can predict concentration
distribution accurately and efficiently. PSO and EM are applied for estimating the source parameters, which can
effectively accelerate the process of convergence. The method is verified by the Indianapolis field study with a
SF6 release source. The results demonstrate the effectiveness of the method.

1. Introduction

Hazardous gas leakage accident has brought huge damage to the
society. For example, Bhopal accident caused thousands of deaths due
to the methyl isocyanate gas leak accident (Varma and Guest, 1993).
Consequently, it is of paramount importance to monitor industrial
emission and use the monitoring data to estimate the release rate and
location of emission source. To estimate the emission source, an at-
mospheric dispersion simulation (ADS) model and a parameter esti-
mation algorithm with high accuracy and efficiency are necessary. The
ADS model is used for predicting the concentration distribution, and the
parameter estimation algorithm is used for finding the optimal source
parameters to make ADS model output as close as possible to the actual
measurement.

Many ADS modeling methods have been developed by researchers.
Gaussian model is a typical and fast tool for atmospheric dispersion
prediction, whose expression is quite simple. Usually, the Gaussian
dispersion model is suitable for emergency management due to its high
efficiency. However, its mechanism is too simple to give the accurate
prediction, whose limitations are: it only supports low wind speed; it
only supports straight-line trajectories; it assumes steady-state atmo-
sphere; it has no memory of previous emissions. The Lagrangian model

is very common in meteorological modeling tools based on random
walk theory (Draxler and Rolph, 2012; Stein et al., 2015; Wilson and
Sawford, 1996). It can simulate the atmospheric dispersion process in
relatively complex meteorological conditions and global scale. This
model is more suitable in large-scale scenarios, but the investigation
area of hazardous gas leakage accident generally cannot reach that
scale. Integrated model combines different dispersion model together,
which is popular in commercial software for risk analysis such as
PHAST (Connan et al., 2013; Hanna et al., 2008). However, the in-
tegrated models also need few minutes to calculate and the result is not
always accurate. In complex environments, CFD model is currently the
optimal option to obtain accurate prediction results (Hanna et al., 2009;
Mazzoldi et al., 2008; Pontiggia et al., 2009). However, the CFD model
needs long computation time, usually measured in hours or even days,
which restricts the application of CFD in emergency management.
Furthermore, a common problem of these methods is that some input
parameters are quite difficult to measure and quantify. Therefore, re-
searchers proposed the methods that can use pre-determined scenarios
to train ANN for decision and bypass some troubling parameters
(Krasnopolsky and Schiller, 2003; So et al., 2010). A previous study also
used the integration of machine learning algorithms and traditional
ADS models to predict the contaminant dispersion (Ma and Zhang,
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2016). The high accuracy of these studies represents that the ANN could
be a useful tool for pollution forecasting and risk analysis.

In terms of source parameters estimation, parameters could be de-
termined by estimating their posterior distribution or finding the
maximum likelihood estimate. Thus, most source estimation methods
are based on Bayesian inference or optimization algorithms
(Hutchinson et al., 2017). Markov Chain Monte Carlo (MCMC) algo-
rithm is usually used for posterior distribution estimation in source
estimation problem (Borysiewicz et al., 2012; Keats et al., 2007;
Tierney, 1994; Yee, 2007). Some filtering methods also apply the
Bayesian theory to update the source parameters (Huber, 2014;
Wawrzynczak et al., 2014; Zhang and Wang, 2013). Optimization al-
gorithms are widely implemented to find the solution of minimum cost
or maximum likelihood, whose theoretical basis is maximum likelihood
estimation (MLE) principle (Qiu et al., 2016; Sharan et al., 2009). In-
telligent optimization methods are usually used, such as particle swarm
optimization (PSO) (Eberhart and Kennedy, 1995; Qiu et al., 2016),
simulated annealing (Thomson et al., 2007) and genetic algorithm
(Allen et al., 2007). In dispersion source estimation problem, the release
rate and location of source should be estimated. When the source lo-
cation is known, these methods could be quite effective because we
only have to estimate one parameter (release rate) (Chai et al., 2015;
Eslinger et al., 2014; Katata et al., 2015). However, if the source lo-
cation is unknown, the problem becomes more complicated because the
algorithm may be difficult to converge. Even if the algorithm can
converge successfully, estimating all these parameters together is a
quite time-consuming task due to the huge search space. Therefore,
expectation maximization (EM) algorithm is introduced to address this
problem (Do and Batzoglou, 2008). In the E-step, the expected value of
source location is estimated using ANN and PSO, while in the M-step,
the estimated release rate is updated on the basis of MLE.

In this paper, the proposed method is able to estimate the emission
source using ANN-based dispersion prediction and PSO-EM-based
parameter estimation. To verify the proposed method, SF6 dispersion
data from Indianapolis field study is applied to validate whether the
method is feasible in practice.

2. Methods

2.1. Workflow

In order to predict the concentration distribution and estimate the
dispersion source, the workflow of the proposed method includes sev-
eral steps:

A. Obtaining a large number of release scenarios covering nearly all
possibilities from gas trace experiment. If it is difficult to control the
variables of field experiment, release scenarios can also be obtained
from simulation experiment.

B. Extracting input and target dataset from release scenarios. To pre-
dict the concentration of the interest point, the input data should
contain the information including source term, meteorological
parameters and the location of interest point. The target data should
be able to present the value or level of gas concentration of the
interest point.

C. Training and testing of the ANN. The input and target dataset ex-
tracted from release scenarios in step B is used for ANN training and
testing to construct an ANN-based ADS model.

D. Configuration of the source estimation parameters. Both temporal
and spatial investigation regions are defined in this step.
Furthermore, initial parameters of the source estimation algorithm
should be determined before inverse calculation.

E. Estimating the source of atmospheric dispersion using PSO or the
combination of PSO and EM.

2.2. Structure of ANN

Generally, complicated ADS model such as CFD needs quite long
time to compute the concentration distribution, while simple model can
hardly give the accurate results. To address this problem, ANN is used
to predict the concentration of the interest point with high efficiency
and accuracy (Ma and Zhang, 2016).

To satisfy the emergency requirements, the input data of the ANN
should be easily to obtain. A rough idea is using all the measured
parameters shown in Table 1 as the input of the ANN. However, it is
quite difficult to train the ANN if we directly put these parameters into
input layer because features of the atmospheric dispersion should be
extracted before training. Generally, the concentration of hazardous gas
follows Gaussian distribution on crosswind direction. Moreover, the
concentration of a specific point is approximately proportional to the
release rate and inversely proportional to the wind speed. Due to these
features, as shown in Fig. 1, we use release rate q, reciprocal of the wind
speed v1/ , and two Gaussian parameters (Gy and Gz) on y- and z-axes as
ANN input. The expressions of Gy and Gz are shown in Eq. (1) according
to the experience of Gaussian dispersion model.
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where Dy and z represents the crosswind distance and the height of the
interest point respectively. H is the height of the emission point. σy and
σz, which represent the deviation of the Gaussian distribution, are the
Gaussian dispersion coefficients affected by downwind distance Dx and
atmospheric stability. Gaussian parameters, wind parameters and
source term parameters are inputs of traditional Gaussian dispersion
model. They are very common and easy-to-measure parameters (also
simple to calculate in simulation software). Moreover, Gaussian dis-
persion model has already been extensively used in source estimation
methods. Thus, by using these parameters as the input of ANN, we can
directly substitute ANN-based atmospheric dispersion model for Gaus-
sian model in source estimation, without changing inputs.

The number of neurons in the hidden layer could be determined by
evaluating some important criteria (e.g. coefficient of determination).
The output layer has only one neuron, meaning the concentration of the
interest point. The algorithm and detailed process of ANN training is
not in our research scope, so the ANN will be directly trained by
MATLAB neural network toolbox in this paper (MATLAB, 2010).

2.3. Quantifying release rate by PSO

The hazardous gas leak accidents can be classified into two cate-
gories. The category 1 is the accident that the source location is already
known, while the category 2 is the accident that source location is

Table 1
Common parameters for atmospheric dispersion model.

Parameters Symbol Unit

Downwind distance Dx m
Crosswind distance Dy m
Height of source H m
Height of interest point z m
Release rate q g s−1

Atmospheric stability class STA /
Wind direction d deg
Wind speed v m s−1

Mixing height zm m
Cloud height zc m
Cloud cover pc %
Temperature T K
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