Contents lists available at ScienceDirect

Atmospheric Environment

journal homepage: www.elsevier.com/locate/atmosenv

Exploratory study of atmospheric methane enhancements derived from natural gas use in the Houston urban area

Nancy P. Sanchez^{a,*}, Chuantao Zheng^{b,c}, Weilin Ye^{b,d}, Beata Czader^a, Daniel S. Cohan^a, Frank K. Tittel^b, Robert J. Griffin^a

^a Department of Civil and Environmental Engineering, Rice University, 6100 Main St, Houston, TX, United States

^b Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX, United States

c State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China

 $^{\rm d}$ College of Engineering, Shantou University, 243 Daxue Road, Shantou 515063, China

ARTICLE INFO

Keywords: Natural gas Methane emissions Natural gas distribution systems Mobile-mode field monitoring Thermogenic methane emission sources

ABSTRACT

The extensive use of natural gas (NG) in urban areas for heating and cooking and as a vehicular fuel is associated with potentially significant emissions of methane (CH_4) to the atmosphere. Methane, a potent greenhouse gas that influences the chemistry of the atmosphere, can be emitted from different sources including leakage from NG infrastructure, transportation activities, end-use uncombusted NG, landfills and livestock. Although significant CH₄ leakage associated with aging local NG distribution systems in the U.S. has been reported, further investigation is required to study the role of this infrastructure component and other NG-related sources in atmospheric CH₄ enhancements in urban centers. In this study, neighborhood-scale mobile-based monitoring of potential CH₄ emissions associated with NG in the Greater Houston area (GHA) is reported. A novel dual-gas 3.337 µm interband cascade laser-based sensor system was developed and mobile-mode deployed for simultaneous CH₄ and ethane (C₂H₆) monitoring during a period of over 14 days, corresponding to \sim 90 h of effective data collection during summer 2016. The sampling campaign covered \sim 250 exclusive road miles and was primarily concentrated on eight residential zones with distinct infrastructure age and NG usage levels. A moderate number of elevated CH₄ concentration events (37 episodes) with mixing ratios not exceeding 3.60 ppmv and associated with atmospheric background enhancements below 1.21 ppmv were observed during the field campaign. Source discrimination analyses based on the covariance between CH_4 and C_2H_6 levels indicated the predominance of thermogenic sources (e.g., NG) in the elevated CH₄ concentration episodes. The volumetric fraction of C_2H_6 in the sources associated with the thermogenic CH_4 spikes varied between 2.7 and 5.9%, concurring with the C_2H_6 content in NG distributed in the GHA. Isolated CH_4 peak events with significantly higher C_2H_6 enhancements (~11%) were observed at industrial areas and locations with high density of petroleum and gas pipelines in the GHA, indicating potential variability in Houston's thermogenic CH₄ sources.

1. Introduction

Methane (CH₄), a potent greenhouse gas (GHG) that also contributes to background ozone levels, is emitted from multiple sources including natural gas (NG) and petroleum systems, mobile and stationary combustion, and microbial degradation in landfills and wastewater treatment plants (EPA, 2017; Fiore et al., 2008). Natural gas systems, including production, processing, and transmission and distribution, constitute the second largest known source of CH₄ emissions to the atmosphere, with estimated 6.5 million metric tons CH₄ emitted in 2015 (24.8% of total CH₄ emissions in the U.S) (EPA, 2017). Ethane (C₂H₆), which also contributes to surface ozone formation and impacts the oxidative capacity of the atmosphere, is co-emitted with CH_4 derived from NG systems but not from non-fossil sources (Brandt et al., 2016; Helmig et al., 2016; Schoell, 1980; Simpson et al., 2012; Xiao et al., 2008). Considering the impact of CH_4 and C_2H_6 in the atmosphere, fugitive emissions from NG systems may potentially outweigh the benefits associated with increased NG usage derived from replacement of coal and oil (Brandt et al., 2016).

Despite multiple studies investigating NG leakage occurring in production and processing stages (Allen et al., 2015; Brantley et al., 2014b; Mitchell et al., 2015; Subramanian et al., 2015; Zavala-Araiza et al., 2015), particular uncertainty remains on the extent of CH_4 emissions associated with NG distribution systems (NGDS), which

E-mail address: nps1@rice.edu (N.P. Sanchez).

https://doi.org/10.1016/j.atmosenv.2018.01.001

^{*} Corresponding author.

Received 15 June 2017; Received in revised form 27 December 2017; Accepted 2 January 2018 Available online 04 January 2018 1352-2310/ © 2018 Elsevier Ltd. All rights reserved.

deliver this fuel to final residential and commercial consumers in urban areas (Hendrick et al., 2016; Jackson et al., 2014). This uncertainty is reflected by differing estimates by the 1990–2010 U.S. GHG inventory (EPA, 2012) and a recent study by Lamb et al. (2015), which based on measurements in thirteen U.S urban distribution systems reported 36–70% lower CH₄ emissions from NGDS. Furthermore, the most recent U.S. GHG inventory (EPA, 2017) estimates CH₄ emissions from NGDS ~ 65% lower than the 1990–2013 U.S. GHG inventory for the same period of time (e.g., 2011–2013) (EPA, 2015b, 2017). NGDS have been identified as relevant CH₄ emission sources in different U.S. urban areas with reported NG loss rates from local NGDS varying between ~2 and 6%, and nationwide estimates between 0.1 and 0.22% (Cambaliza et al., 2015; Lamb et al., 2015, 2016; McKain et al., 2015; Wennberg et al., 2012).

In the past 60 years, the NGDS infrastructure in the U.S. has evolved from being mainly constituted by leak-prone materials such as unprotected steel (bare steel, BS) and cast iron (CI) to being dominated by plastic pipelines (DOE, 2017; PHMSA, 2016b). Pipeline replacement programs have followed distinct dynamics in different U.S. states, leading to local NGDS with marked differences in pipeline composition and infrastructure age (DOE, 2017; Gallagher et al., 2015). As such, it is expected that leaks from the NGDS are highly spatially dependent.

Recent initiatives such as those of the Environmental Defense Fund and Google Earth Outreach (von Fischer et al., 2017) have conducted CH₄ leak surveys in several U.S. urban areas, following previous studies mostly conducted in Northeast and Midwest cities (Chamberlain et al., 2016; Gallagher et al., 2015; Hendrick et al., 2016; Jackson et al., 2014; Lamb et al., 2016; McKain et al., 2015; Phillips et al., 2013). The incidence of CH₄ leaks associated with NGDS has been reported as significant for urban centers with aging NG infrastructure including Washington D.C., Boston, MA and New York City, and more moderate for cities such as Durham, NC, Cincinnati, OH and Ithaca, NY (leak densities ranging between 0.22 and 4.3 leaks/road mile) (Chamberlain et al., 2016; Gallagher et al., 2015; Jackson et al., 2014; Phillips et al., 2013). In addition to emissions from local NGDS and end-use uncombusted NG, emissions from compressed NG (CNG) fueled vehicles have been reported as relevant urban sources of atmospheric CH4 (Curran et al., 2014; Hesterberg et al., 2008; Lamb et al., 2016; von Fischer et al., 2017).

The reported variability in NG leakage across the U.S. and the potential occurrence of CH_4 emissions from distinct in-use NG sources in urban centers highlight a need for area-specific investigations of enhancements in atmospheric CH_4 levels associated with NG distribution and usage. Although the Greater Houston area (GHA) is the fifth-largest metropolitan area in the U.S. and Houston is the most populated center in Texas (which in turn is the largest consumer of NG and has the second largest CNG vehicle fleet in the U.S. (EIA, 2015)), no studies on the occurrence of CH_4 emissions associated with the use of NG in this urban center have been reported in the scientific literature to date.

This paper describes an initial study on the incidence of NG-related CH4 emissions in selected zones of the GHA during August and September 2016. Daytime mobile-mode monitoring of CH₄ and C₂H₆ concentrations was conducted primarily in eight selected residential zones with high, medium and low expected probability of CH₄ emissions, according to selected proxies for NGDS infrastructure age and NG usage. Multi-day sampling was performed in zones with higher expected probability of CH₄ emissions, while single-day monitoring was conducted in zones with lower potential of CH₄ leakage. More limited CH₄ and C₂H₆ sampling was completed at three GHA neighborhoods with recent reports of NGDS-related incidents associated with pipelines dating back to 1945 (PHMSA, 2016a). Additionally, monitoring of CH₄ and C2H6 levels was conducted continuously while en route to the selected sampling areas. Total monitoring comprised ~90 h of CH₄ and C₂H₆ concentration data and encompassed approximately 250 exclusive road miles.

infrared laser-based sensor system developed for simultaneous detection of these gas species based on a single 3.337-µm light source. The compactness of this sensor system, derived mainly from the use of a single laser source and reduced-size electronics, enables its use in mobile-mode environmental monitoring allowing C_2H_6/CH_4 ratio-based CH_4 source discrimination analyses. While CH_4 source profiling based on off-line analysis of $(C_2H_6 + \text{propane})/CH_4$ ratios in limited subsets of samples and using the C_2H_6/CH_4 ratio employing separate CH_4 and C_2H_6 instruments has been previously demonstrated (Jackson et al., 2014; Yacovitch et al., 2014), this study reports, for the first time, the application of a single dual-gas instrument enabling continuous CH_4 source identification.

2. Methods

2.1. Selection of sampling zones

Eight residential zones in the GHA with distinct expected probability of NG leakage were selected for monitoring of CH_4 and C_2H_6 levels. The median housing age (MHA) and the NG heating units density (HUD), as proxies for the NGDS infrastructure age and NG consumption, respectively, were used to define the expected probability of CH_4 leakage in the block groups in the GHA (United States Census Bureau, 2014). Four categories of expected CH_4 leak occurrence (low, high, medium A and medium B) were defined based on the intersection between MHA and HUD levels as depicted in Fig. 1.

The transition between old and new infrastructure was established based on the predominant pipeline materials used in NG distribution systems over the past 60 years and the tendency of these materials to crack and/or leak (Fig. S1, Supplementary Information, SI). According to the timeline in Fig. S1, pre-1980 and post-1990 block groups in the GHA were classified with higher and lower expected probability of CH_4 leakage, respectively (high and medium A, and low and medium B categories in Fig. 1, respectively). This timeline coincides with the approximate transition between metal and plastic pipelines in the Houston area according to non-official information provided by the local NG distribution company (CenterPoint Energy Entex).

Census data from the American Community Survey (United States Census Bureau, 2014) were used to identify neighborhoods in the GHA associated with high density of pre-1980 and post-1990 housing units (above the 90th percentile of the housing unit density in each category for the Houston area). The statistical distribution of the HUD in the pre-selected zones was examined, and the 10th and 90th percentiles of this

Fig. 1. Expected probability of NG leakage based on median housing age and density of NG heating units as proxies for infrastructure age and NG consumption, respectively.

Download English Version:

https://daneshyari.com/en/article/8864149

Download Persian Version:

https://daneshyari.com/article/8864149

Daneshyari.com