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A B S T R A C T

Quantitative precipitation estimation (QPE) is one of the important applications of weather radars. However, in
complex terrain such as Tibetan Plateau, it is a challenging task to obtain an optimal Z–R relation due to the
complex spatial and temporal variability in precipitation microphysics. This paper develops two radar QPE
schemes respectively based on Reflectivity Threshold (RT) and Storm Cell Identification and Tracking (SCIT)
algorithms using observations from 11 Doppler weather radars and 3264 rain gauges over the Eastern Tibetan
Plateau (ETP). These two QPE methodologies are evaluated extensively using four precipitation events that are
characterized by different meteorological features. Precipitation characteristics of independent storm cells as-
sociated with these four events, as well as the storm-scale differences, are investigated using short-term vertical
profile of reflectivity (VPR) clusters. Evaluation results show that the SCIT-based rainfall approach performs
better than the simple RT-based method for all precipitation events in terms of score comparison using validation
gauge measurements as references. It is also found that the SCIT-based approach can effectively mitigate the
local error of radar QPE and represent the precipitation spatiotemporal variability better than the RT-based
scheme.

1. Introduction

Radar quantitative precipitation estimation (QPE) is an active and
vibrant field with numerous accomplishments resulting in practical
applications such as worldwide deployment of weather radars and
urban scale flood application of dense radar networks (e.g., Yoshikawa
et al., 2012; Chen and Chandrasekar, 2015; Shimamura et al., 2016;
Chandrasekar et al., 2018). However, fundamental challenges in radar
QPE still exist from both physical science and radar engineering points
of view (Cifelli and Chandrasekar, 2010). On the one hand, the per-
formance of radar QPE greatly relies on the physical model of raindrop
size distribution (DSD) and the relation of the physical model to radar
parameters. The precipitation microphysics in different storms or dif-
ferent regimes within a single storm cell may vary due to the complex
internal cloud microphysical processes and/or external environmental
factors (Chapon et al., 2008; Lee and Zawadzki, 2005; Smith et al.,

2009; Yoshikawa et al., 2014). As a result, the inherent errors asso-
ciated with the radar reflectivity and rainfall rate relationships (i.e.,
Z–R relations) derived for such nonuniformly distributed precipitation
are difficult to remove (Bringi and Chandrasekar, 2001; Steiner and
Smith, 2000; Cifelli and Chandrasekar, 2010). On the other hand, the
system engineering issues including radar measurement height, beam
broadening, and coverage limitations also pose challenges to radar QPE
(Fulton et al., 1998; Chen and Chandrasekar, 2015). Such engineering
challenges are especially obvious in operational or urban environments
(Chandrasekar et al., 2018; Cifelli et al., 2018). Both the physical and
engineering considerations make it difficult to find an ideal Z-R relation
that is able to capture the spatial and temporal variability of pre-
cipitation in different storm seasons for a certain region.

A large number of previous studies have been devoted to improving
radar QPE using precipitation measurements from rain gauges. The
regional precipitation climatology derived using long-term radar and
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gauge observations is a useful tool to guide the development of radar
rainfall products (Crochet, 2009; Nesbitt et al., 2006). Rain gauge data
are also commonly used to conduct radar QPE mean-field-bias correc-
tion (e.g., Seo et al., 1999) and local bias correction (e.g., Zhang et al.,
2016; Willie et al., 2017). However, most of the previous research fo-
cused on single Z-R relation-based analysis, which is not enough since
different rain types may coexist especially in large-scale precipitation
systems such as typhoon and Meiyu Front in China (Gou et al., 2014). In
recent years, different empirical Z-R relations are used for different
surface precipitation types such as stratiform or convective rain. Ty-
pical examples include the multi-radar multi-sensor (MRMS) system
developed by Zhang et al. (2016), which adopts different Z-R relations
for warm/cool stratiform rain and convective rain and hail. In addition,
dense radar-gauge pairs may supply very useful feedback information
for the quantitative reconstruction of Z-R relationships (Alfieri et al.,
2010).

In complex terrains such as Northern California (Willie et al., 2017;
Cifelli et al., 2018) or Tibetan Plateau (TP), the selection of appropriate
Z-R relation is more challenging due to additional environment factors
such as partial beam blockage (PBB) and bright-band (BB) contamina-
tion (Kitchen et al., 1994; Fulton et al., 1998; Willie et al., 2016). The
orographic enhancement in complex terrain also has significant impacts
on regional rainfall climatology (White et al., 2003). In this paper, a
network of 11 Doppler weather radars and a dense rain gauge network
over the Eastern Tibetan Plateau (ETP) are used to demonstrate radar
rainfall performance in this complex terrain typically influenced by its
unique topography and climate. Two adaptive QPE schemes are de-
veloped to dynamically reconstruct radar rainfall relations by fitting
real-time radar-gauge rainfall observations using probability matching
method (PMM: Rosenfeld et al., 1994). One is based on reflectivity
threshold (RT), which assumes that similar radar echoes are homo-
geneous and fitting of Z–R relationship is done at every 5 dBZ intervals.
The other one is based on the SCIT algorithm (Johnson et al., 1998) that
refines three-dimensional multi-radar mosaic grids into independent
storm regions to capture storm-scale or regional precipitation features
(Gou et al., 2015). The microphysical principles of these two QPE
schemes, their representative capability in convective conditions in-
duced by orographic enhancement, as well as their rainfall performance
over such a complex terrain are detailed in this paper. In addition, the
ground radar based storm-scale VPR is investigated to reveal the mi-
crophysical differences between storm cells.

The main goal of this study is to address the aforementioned issues
regarding the SCIT-based approach based on four precipitation events
over the ETP. Section 2 introduces the datasets and QPE methods.
Section 3 details the precipitation events used for evaluation and their
microphysical differences during the storm evolutions through in-
vestigating the storm-scale VPRs. The evaluation results of the RT and
SCIT based QPE algorithms are presented in Section 4. Section 5 sum-
marizes the main points of this paper and suggests directions for future
research.

2. Data and methodology

2.1. Study area

The ETP is located near the Hengduan Mountains, Southwest of
China. Fig. 1 illustrates the digital elevation map (DEM) of China and
particularly for this study domain (102°E–111°E, 28°N–33°N). Fig. 1b
shows that the region of interest in this study extends from Hengduan
Mountains to Wushan Mountains to the east, Ta-pa Mountains to the
north, Dalou Mountains to the southeast, and the Yunnan-Guizhou
Plateau to the southwest. It covers over 260,000 km2 in total with an
average elevation surpassing 4000 m above mean sea level (MSL) in the
west, 3000 m above MSL in the north, and 2000 m above MSL in the
south. The ETP exerts a direct influence on the social and economic
development in this region, due to its multiple climatic systems,

complex geomorphology, and various internal and external geological
and ecological impacts. The ETP is characterized by the unique inter-
actions among the atmosphere, hydrosphere, and biosphere. In parti-
cular, special atmospheric and active hydrological processes occur
frequently on multiple scales on the ETP. These processes form the
fundamental basis of its unique geography and enable it to generate
considerable impacts on regional precipitation microphysics.

2.2. Radar and gauge network

11 Doppler weather radars are currently deployed for severe
weather warning and forecast operations in this region. The specific
locations and basic system specifications of these 11 radars are listed in
Table 1. The radar type is specified according to its operating frequency
and different manufacturers. SA/SC in Table 1 both mean S-band,
whereas CD means C-band. The radial resolutions of SC and CD radars
are configured as 250 m with an azimuthal resolution of 1°. The SA
radars are set with resolution of 1000 m by 0.98°. The radar volume
scan modes are all configured as the standard volume coverage pattern
with sweep elevations set at 0.5°, 1.5°, 2.4°, 3.5°, 4.9°, 5.6°, 6.5°, 7.9°,
9.5°, 14.5°, and 19.5°. Such precipitation mode is used for meteor-
ological operations. It takes about 6 min to complete a volume scan,
and the base-level (level II) data are archived as volume scan files. The
maximum radar reflectivity radial ranges in Table 1 are determined by
the configurations of pulse repetition frequency (PRF), where SC and
CD radars use the same PRF while SA adopts different PRF at different
scan elevations. The coverage map of each of these 11 radars and
heights of the lowest radar reflectivity that can be used to derive QPE
are depicted in Fig. 2a. The radar network topology in Fig. 2a also
shows its potential capability to observe various weather phenomena
passing through the ETP.

There are 3264 rain gauges over the ETP (see Fig. 2b), most of
which are tipping-bucket gauges with one-minute temporal resolution
for real-time measurement, enabling them to capture the evolution of
fine-scale precipitation events. The gauge observations are uploaded
and transferred to the meteorological bureau at the municipal, pro-
vincial and national levels in order and in near real-time. Such dense
rain gauge network also ensures the capability of SCIT to capture and
represent storm-scale or regional precipitation processes.

The RT and SCIT based radar QPE algorithms are described in
Section 2.3. Before they are evaluated on an hourly basis, the hourly
rainfall observations from rain gauges are quality-controlled via the
procedure shown in Fig. 3: (1) the data series with interrupted transfer
reports are removed to ensure the subsequent processing; (2) with the
reflectivity aloft two empirical Z–R relationships (i.e., Z= 640R1.6 and
Z= 200R1.6) are applied to estimate the possible maximum (Rmax) and
minimum (Rmin) rain gauge hourly measurements, respectively. Those
lying outside of [Rmin − 5, Rmax + 5] are removed from the raw da-
taset; (3) if the gauge observation is< 0.1 mm but corresponding radar
estimation is> 5 mm, the gauge is assumed jammed likely due to tree
leaves, insects, and/or evaporation. If the gauge observation is> 5 mm
but corresponding radar estimation is< 0.1 mm, the bucket is sus-
pected to have provided a false reading, and these observations are not
used; (4) The remaining data are further checked using the ratio of
rainfall estimation (for a given gauge location) using the nearest five
surrounding gauges based on inverse distance weighting method
(Lloyd, 2005), and the measured rainfall by the gauge at the same lo-
cation. The gauge data point is abandoned in the subsequent cross-va-
lidation if the ratio is higher than four.

2.3. RT and SCIT-based Z–R relationship fitting

Before the implementation of Z–R relationships, radar base-level
volume data is first quality-controlled to eliminate ground clutter using
the fuzzy logic approach described in Berenguer et al. (2006). Then, the
radar data at polar coordinates are mapped onto Cartesian grids with a
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