Accepted Manuscript

Electrical sensing of the dynamical structure of the planetary boundary layer

K.A. Nicoll, R.G. Harrison, H.G. Silva, R. Salgado, M. Melgao, D. Bortoli

PII: S0169-8095(17)30624-5

DOI: doi:10.1016/j.atmosres.2017.11.009

Reference: ATMOS 4112

To appear in: Atmospheric Research

Received date: 2 June 2017

Revised date: 2 November 2017 Accepted date: 6 November 2017

Please cite this article as: K.A. Nicoll, R.G. Harrison, H.G. Silva, R. Salgado, M. Melgao, D. Bortoli, Electrical sensing of the dynamical structure of the planetary boundary layer. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Atmos(2017), doi:10.1016/j.atmosres.2017.11.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Electrical sensing of the dynamical structure of the planetary boundary layer

K.A. Nicoll¹, R.G. Harrison¹, H.G. Silva³, R. Salgado⁴, M. Melgao⁴, D. Bortoli⁴

Abstract

Turbulent and convective processes within the planetary boundary layer are responsible for the transport of moisture, momentum and particulate matter, but are also important in determining the electrical charge transport of the lower atmosphere. This paper presents the first high resolution vertical charge profiles during fair weather conditions obtained with instrumented radiosonde balloons over Alqueva, Portugal during the summer of 2014. The short intervals (4 hours) between balloon flights enabled the diurnal variation in the vertical profile of charge within the boundary layer to be examined in detail, with much smaller charges (up to 20pCm⁻³) observed during stable night time periods than during the day. Following sunrise, the evolution of the charge profile was complex, demonstrating charged ultrafine aerosol, lofted upwards by daytime convection. This produced charge up to 92pCm⁻³ up to 500m above the surface. The diurnal variation in the integrated column of charge above the site tracked closely with the diurnal variation in near surface charge as derived from a nearby electric field mill, confirming the importance of the link between surface charge generation processes and aloft. The local aerosol vertical profiles were estimated using backscatter measurements from a collocated ceilometer. These were utilised in a simple model to calculate the charge expected due to vertical conduction current flow in the global electric circuit through aerosol layers. The analysis presented here demonstrates that charge can provide detailed information about boundary layer transport, particularly in regard to the ultrafine aerosol structure, that conventional thermodynamic and ceilometer measurements do not.

¹ Department of Meteorology, University of Reading, Earley Gate, Reading, Berkshire, RG6 6BB, UK ² Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK

³Renewable Energies Chair, University of Évora, Palácio do Vimioso, Largo Marquês de Marialva, 7002-554, Évora, Portugal.

⁴Departamento de Física, ICT, Instituto de Ciências da Terra, Universidade de Évora, Rua Romão Ramalho 59, 7002-554 Évora, Portugal.

Download English Version:

https://daneshyari.com/en/article/8864793

Download Persian Version:

https://daneshyari.com/article/8864793

<u>Daneshyari.com</u>