Author's Accepted Manuscript

A new method to retrieve the real part of the equivalent refractive index of atmospheric aerosols

S. Vratolis, P. Fetfatzis, A. Argyrouli, A. Papayannis, D. Müller, I. Veselovskii, A. Bougiatioti, A. Nenes, E. Remoundaki, E. Diapouli, M. Manousakas, M. Mylonaki, K. Eleftheriadis

www.elsevier.com/locate/jaerosci

PII: S0021-8502(17)30411-1

DOI: https://doi.org/10.1016/j.jaerosci.2017.12.013

Reference: AS5239

To appear in: Journal of Aerosol Science

Received date: 17 October 2017 Revised date: 27 December 2017 Accepted date: 27 December 2017

Cite this article as: S. Vratolis, P. Fetfatzis, A. Argyrouli, A. Papayannis, D. Müller, I. Veselovskii, A. Bougiatioti, A. Nenes, E. Remoundaki, E. Diapouli, M. Manousakas, M. Mylonaki and K. Eleftheriadis, A new method to retrieve the real part of the equivalent refractive index of atmospheric aerosols, *Journal of Aerosol Science*, https://doi.org/10.1016/j.jaerosci.2017.12.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A new method to retrieve the real part of the equivalent refractive index of atmospheric aerosols

S. Vratolis^{\$\frac{1}{2}\$}, P. Fetfatzis¹, A. Argyrouli^{12,13}, A. Papayannis², D. Müller⁵, I. Veselovskii^{10,11}, A. Bougiatioti^{2,3,4}, A. Nenes^{4,6,7,8}, E. Remoundaki⁹, E. Diapouli¹, M. Manousakas¹, M. Mylonaki², K. Eleftheriadis¹

 ¹ERL, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre of Scientific Research Demokritos, 15310 Ag. Paraskevi, Attiki, Greece
 ²Laser Remote Sensing Unit, Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens (NTUA), 15780 Zografou, Greece
 ³ECPL, Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
 ⁴School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA

⁵School of Physics, Astronomy and Mathematics, University of Hertfordshire, Herts AL 10 9AB, UK

⁶ICE-HT, Foundation for Research and Technology, Hellas, 26504 Patras, Greece

⁷Institute of Environmental Research and Sustainable Development, National Observatory of Athens, Athens, Greece

⁸School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA

⁹Laboratory of Environmental Science and Engineering, School of Mining and Metallurgical Engineering, National Technical University of Athens, 15780 Zografou, Greece
 ¹⁰Physics Instrumentation Center of GPI, Troitsk, Moscow, Russia
 ¹¹Joint Center for Earth Systems Technology, UMBC, Baltimore, USA
 ¹²Technical University of Munich, TUM Department of Civil, Geo and Environmental Engineering, Chair of Remote Sensing Technology

¹³German Aerospace Centre (DLR), Remote Sensing Technology Institute, Oberpfaffenhofen, 82234, Wessling, Germany

Abstract

In the context of the international experimental campaign Hygroscopic Aerosols to Cloud Droplets (HygrA-CD, 15 May to 22 June 2014), dry aerosol size distributions were measured at Demokritos station (DEM) using a Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 550 nm (electrical mobility diameter), and an Optical Particle Counter (OPC model Grimm 107 operating at the laser wavelength of 660 nm) to acquire the particle size distribution in the size range of 250 nm to 2.5 μ m optical diameter. This work describes a method that was developed to align size distributions in the overlapping range of the SMPS

Download English Version:

https://daneshyari.com/en/article/8865294

Download Persian Version:

https://daneshyari.com/article/8865294

<u>Daneshyari.com</u>