## ARTICLE IN PRESS

IOURNAL OF ENVIRONMENTAL SCIENCES XX (2017) XXX-XXX



Available online at www.sciencedirect.com

### **ScienceDirect**

www.elsevier.com/locate/jes



www.jesc.ac.cn

# Genotoxicity of gold nanoparticles functionalized with indolicidin towards Saccharomyces cerevisiae

Q3 Q2 Elisabetta de Alteriis¹, Annarita Falanga², Stefania Galdiero², Marco Guida¹,
Valeria Maselli¹, Emilia Galdiero¹,\*

- 1. Department of Biology, University of Naples "Federico II", 80100 Naples, Italy
- 2. Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy

#### 90 ARTICLEINFO

#### 11 Article history:

5

- 12 Received 22 September 2016
- 13 Revised 23 January 2017
- 14 Accepted 26 April 2017
- 15 Available online xxxx
- 32 Keywords:
- 33 Ecotoxicity
- 34 Antimicrobial peptide
- 35 Comet assay
- 36 Yeast

39

48

43

46

47

48

49

50

51

52

53

54

55

56

- 37 Nanoparticles
- 38 Oxidative stress

#### ABSTRACT

The toxic effects of gold nanoparticles surface-functionalized with the antimicrobial 16 peptide indolicidin (AuNPs-indolicidin) towards the yeast Saccharomyces cerevisiae, one of 17 the major eukaryotic model organisms, have been evaluated. Growth and survival, 18 genotoxicity, as measured by comet assay, and expression of the YCA1, an apoptosis 19 indicating gene, following 72 hr exposure of yeast to AuNPs-indolicidin, and to AuNPs and 20 indolicidin alone have been examined. The gold nanoparticles exerted toxicity with DNA 21 damage, accompanied by reactive oxygen species production (ROS), but they do not inhibit 22 yeast growth and viability. Genotoxicity was less pronounced for surface-functionalized 23 nanoparticles, showing that S. cerevisiae is quite resistant to the complex AuNPs-indolicidin. 24 A progressive reduction of the genotoxic effect was observed along 72 hr exposure, 25 presumably due to the activation of DNA repair mechanisms. These findings suggest the 26 occurrence of a physiological protective response of S. cerevisiae towards nanoparticles, 27 thereby providing useful information to the assessment of the environmental impact of 28 metal nanoparticles.

© 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. 30 Published by Elsevier B.V. 31

#### Introduction

The increased use of engineered nanoparticles (NPs) in commercial products (cosmetics, electronics, paints, medical devices, food, packaging, catalysts, antimicrobial fabrics, water treatment membranes) (Aitken et al., 2006; Handy et al., 2008; Karnik et al., 2005; Roco, 2003; Savolainen et al., 2010) unavoidably leads to their significant accumulation in the earth with great concerns regarding the possible adverse effects on environment as well as on human health. Therefore, assessment of NP toxicity is needed before any application and it is strictly necessary when NPs are used in the biomedical field as drug or gene delivery systems or for other

therapeutic purposes. In particular, gold nanoparticles 57 (AuNPs) have received significant attention because of their 58 unique physico-chemical properties that make them well 59 suited for biomedical applications (Levy et al., 2010; Ma et al., 60 2011).

A number of studies have evaluated the toxicity of a 62 variety of AuNPs with different sizes and coatings (Alkilany 63 and Murphy, 2010; Murphy et al., 2008), showing that AuNPs 64 are mainly inert, though some authors report about their 65 cytotoxicity (Pan et al., 2014; Tiedemann et al., 2014). Toxicity 66 tests were mainly performed on freshwater algae (Renault 67 et al., 2008), daphnias (Galdiero et al., 2015; Li et al., 2010), 68 zebrafish embryos (Browning et al., 2009) and adult zebrafish 69

#### http://dx.doi.org/10.1016/j.jes.2017.04.034

1001-0742/© 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Please cite this article as: de Alteriis, E., et al., Genotoxicity of gold nanoparticles functionalized with indolicidin towards Saccharomyces cerevisiae, J. Environ. Sci. (2017), http://dx.doi.org/10.1016/j.jes.2017.04.034

<sup>\*</sup> Corresponding author. E-mail: egaldier@unina.it (Emilia Galdiero).

70

71

72

73

74

75

76

77

78

79

80

82

83

85

86

87

88

89

90

91

92 93

94

95

97

98

99

100

101

103

104

105

106

107

108

109

110

112

113

115

116

117

118

119

120

121

122

124

125 126

127

128

129

(Geffroy et al., 2012). However, results are often contradictory even when using the same bioindicator (Asharani et al., 2011), due to the variety of nanoparticles examined and the multiplicity of the experimental approaches (Harper et al., 2008).

The antimicrobial peptide indolicidin is a representative of the cathelicidin host defence peptides (HDP), and was chosen because of its many activities such as antibacterial, antifungal, antiparasitic, antiviral, immunomodulator and inhibitor of aminoglycoside antibiotic resistance enzymes (Kovacs-Nolan et al., 2009; Sur et al., 2015). However, indolicidin may be degraded by proteases thus its therapeutic use may be greatly strengthened following conjugation with nanoparticles.

In this work, we conjugated indolicidin to 5 nm-diameter AuNPs in the presence of citrate buffer (Turkevich et al., 1951). The conjugation to AuNPs may allow the nanosystem to enter cells using the endocytotic mechanism in a manner dependent on its size and shape, and to reach its subcellular target; this conjugation may allow to control the specificity for the target, stability and release of the drug from the nanoparticle. The toxicity of AuNPs-complexes originates from two features: interactions with the negatively charged cell and subcellular membranes, and ability to disrupt the membranes and escape from vesicles.

Multiple organisms are used in ecotoxicology studies of engineered nanomaterials including bacteria, fungi, algae and crustaceans, whereas scarce studies report on the use of the yeast Saccharomyces cerevisiae. On the contrary, yeast is frequently used in toxicology evaluations of chemicals such as heavy metals, anti-cancer drugs, and herbicides (Buschini et al., 2003; Cabral et al., 2003; Schmitt et al., 2004). S. cerevisiae, one of the major eukaryotic model organisms, is largely used in molecular and cell biology studies since its cellular structure and organization is similar to that of higher organisms, with the advantages of a shorter generation time, easier manipulation and well-established cultivation techniques. Therefore, S. cerevisiae could also provide clues to understand nanotoxicity in mammalian cells and environmental organisms: not only the yeast cellular machinery and functional organization have many similarities with those of higher eukaryotes, but also the oxidative stress response and the family of drug resistance pumps are also present. However, the sensitivities of individual yeast cells to oxidative stressors are heterogenous and fluctuate during yeast metabolic oscillations but their major consequences are apoptosis (Madeo et al., 2002).

A few studies have investigated the potential impact of NPs on yeast. Kasemets et al. (2009) showed that the yeast S. cerevisiae is relatively resistant to CuO and ZnO-NPs when compared with bacteria and algae. Lee et al. (2008) reported that S. cerevisiae showed a higher survival rate than Escherichia coli and Bacillus subtilis after exposure to AgNPs. Overall, the experimental results reported in these studies show a relatively high robustness of yeast towards nanoparticle exposure, but toxicity mechanisms are still poorly understood. In this preliminary study, we have investigated the potential effect of the novel AuNPs-indolicidin complex on this representative organism, and explored possible toxicity mechanisms, in order to permit safe pharmacological applications and estimate how changes on the surface of Au-NPs

due to the fact that functionalization might modify nanopar- 130 ticle reactivity.

Considering that exposure may not produce evident cyto- 132 toxic effects on a robust cell such as yeast, we have focused on 133 the possible genotoxic effect of the AuNPs-indolicidin complex, 134 evaluated by the alkaline comet assay, during a long-term 135 (72 hr) exposure and compared to that exerted by the AuNPs 136 and indolicidin alone.

The yeast comet assay is a fast and sensitive technique to 138 measure oxidative DNA damage, DNA damage repair, and the Q4 genotoxic or protective effects of chemicals (Azevedo et al., 140 2011; Oliveira and Johansson, 2012). Although several proto- 141 cols exist for preparing slides, lysing cells, performing electro- 142 phoresis and staining slides, results are remarkably similar for 143 mammalian cells using most of the published methods (Olive 144 and Banath, 2006).

S. cerevisiae cells turned out to be more sensitive than 146 mammalian cells to the action of different substances like as 147 methyl methane sulfonate and hydrogen peroxide (Miloshev 148 et al., 2002). The higher sensitivity of S. cerevisiae cells towards 149 γ-irradiation (Nemavarkar et al., 2004), oxidative damage 150 during replicative ageing (Grzelak et al., 2006), and Cr-(III)- 151 organic compounds (Chatterjee and Luo, 2010) revealed by the 152 comet Assay was confirmed (Azevedo et al., 2011; Hrenović 153 et al., 2010; Lah et al., 2004). Currently the technique was 154 upgraded in order to obtain higher sensitivity and reproducibility of the results (Peycheva et al., 2009).

In this work, the genotoxic effect has been related to a 157 general oxidative stress response, evidenced by reactive- 158 oxygen-species (ROS) production, and also to the expression 159 of the apoptosis-indicating gene YCA1 (Madeo et al., 2002).

162

#### 1. Materials and methods

#### 1.1. Peptide synthesis

The peptide was synthesized using standard solid-phase-9- 164 fluorenylmethoxycarbonyl (Fmoc) method as previously report- 165 ed (Galdiero et al., 2003). Briefly, the peptide was obtained using 166 a MBHA (0.6 mmol/g, Sigma Aldrich, Italy) resin by consecutive 167 deprotection and coupling steps. Peptide deprotection was 168 performed with a solution of 30% piperidine (analytical grade, 169 Sigma Aldrich, Italy) in Dimethylformamide (DMF, Labscan Ltd., 170 Dublin, Ireland), 5 min twice. The coupling was conducted 171 with 2 equivalents of amino acid in presence of 2 equivalent of 172 PyBop (0.5 mol/L, Sigma Aldrich, Italy, in DCM) and 4 equivalent 173 of N,N-Diisopropylethylamine (DIPEA, Sigma Aldrich, Italy,) 174 (2 mol/L in NMP) for 40 min. The peptide was cleaved from 175 the resin and deprotected by treatment with a solution of 176 trifluoroacetic acid (Sigma Aldrich, Italy, analytical grade) and 177 scavengers for 300 min. TFA was concentrated and peptide was 05 precipitated in cold ethylic ether (Sigma Aldrich, Italy, analytical 179 grade). Analysis of the crude was performed by LC-MS using a 180 gradient of acetonitrile for HPLC-SUPER GRADIENT (0.1% TFA) in 06 water (0.1% TFA) from 5% to 70% for 15 min. Purification was 182performed by preparative RP-HPLC using a gradient of acetoni- Q7 trile (0.1% TFA) in water (0.1% TFA) from 5% to 70% for 20 min. 184 Purified peptide was obtained with good yields (30%-40%). 185 Peptide sequence: Ac-CILPWKWPWWPWRR-CONH<sub>2</sub>.

#### Download English Version:

# https://daneshyari.com/en/article/8865547

Download Persian Version:

https://daneshyari.com/article/8865547

<u>Daneshyari.com</u>