ARTICLE IN PRESS

IOURNAL OF ENVIRONMENTAL SCIENCES XX (2017) XXX-XXX

Available online at www.sciencedirect.com

ScienceDirect

www.elsevier.com/locate/jes

www.iesc.ac.cn

Adsorption-oxidation of hydrogen sulfide on Fe/walnut-shell activated carbon surface modified by NH₃-plasma

🕦 📭 Ping Ning^{1,3}, Sijian Liu^{1,3}, Chi Wang², Kai Li^{1,*}, Xin Sun¹, Lihong Tang¹, Gui Liu¹

- 1. Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- 5 2. Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China

ARTICLEINFO

- 10 Article history:
- 11 Received 16 March 2017
- 12 Revised 23 May 2017
- 13 Accepted 15 June 2017
- 14 Available online xxxx
- 31 Keywords:
- 32 Dielectric barrier discharge
- 33 Non-thermal plasma
- 34 Surface modification
- 35 Hydrogen sulfide
- 36 Fe/walnut-shell activated carbon
- 37 (Fe/WSAC)

38

44

 $\frac{45}{46}$

47

48

49

50

51

52

53

54

55

56

 O_4

6

9

ABSTRACT

Walnut-shell activated carbon (WSAC) supported ferric oxide was modified by non-thermal 15 plasma (NTP), and the removal efficiency for hydrogen sulfide over Fe/WSAC modified 16 by dielectric barrier discharge (DBD) was significantly promoted. The sample modified for 17 10 min and 6.8 kV output (30 V input voltage) maintained 100% H₂S conversion over a long 18 reaction time of 390 min. The surface properties of adsorbents modified by NTP under 19 different conditions were evaluated by the methods of X-ray photoelectron spectroscopy 20 (XPS), Brunauer–Emmett–Teller (BET) analysis and in-situ Fourier transform infrared spectroscopy (FTIR), to help understand the effect of the NTP treatment. NTP treatment enhanced the 22 adsorption capacity of Fe/WSAC, which could due to the formation of micro-pores with sizes of 23 0.4, 0.5 and 0.75 nm. XPS revealed that chemisorbed oxygen changed into lattice oxygen after 24 NTP treatment, and lattice oxygen is beneficial for H₂S oxidation. From the in-situ FTIR result, 25 transformation of the reaction path on Fe/WSAC was observed after NTP modification. The 26 research results indicate that NTP is an effective method to improve the surface properties of 27 the Fe/WSAC catalyst for H₂S adsorption-oxidation.

 $\hbox{@ 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. } 29$

Published by Elsevier B.V. 30

Introduction

Removal of sulfur-containing species is currently a strategic issue in the application of yellow phosphorus tail gas (Li et al., 2015; Ping et al., 2004). CO is the primary component (more than 90%) of yellow phosphorus tail gas, and is an important raw material of "one-carbon" chemical processes (Li et al., 2015). However, hydrogen sulfide (800–1100 mg/m³) in the tail gas is obstructing the development of "one-carbon" processes. H_2S removal has important implications for the ability to obtain pure CO from yellow phosphorus tail gas. Usually, adsorption is the conventional and effective way for H_2S removal. It is well known that activated carbon is commonly used as an adsorbent in gas applications in industry (Chen

et al., 2013b; Gupta and Saleh, 2013; Moreno-Castilla and 57 Perez-Cadenas, 2010), and adsorption on activated carbon 58 is considered to be a very effective method for removal of 59 impurities (Bagreev and Bandosz, 2001; Bandosz, 2002).

Activated carbon (AC) can be obtained by carbonization of 61 biomass (such as wood, bamboo, coconut shells, walnut shells), 62 and has large surface area, huge pore volume and complex pore 63 structure. Activated carbons with broad pore size distributions 64 are applied for removal of large organic molecules, and micro- 65 porous carbons are used for adsorption of light gases. The specific 66 surface chemistry is also important in adsorption processes 67 (Bagreev et al., 2002; Yan et al., 2002). However, compared to 68 adsorbent metal oxides such as mesoporous-alumina, the components on the surface of AC are not sufficiently effective to 70

http://dx.doi.org/10.1016/j.jes.2017.06.017

1001-0742/© 2017 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Please cite this article as: Ning, P., et al., Adsorption-oxidation of hydrogen sulfide on Fe/walnut-shell activated carbon surface modified by NH₃-plasma, J. Environ. Sci. (2017), http://dx.doi.org/10.1016/j.jes.2017.06.017

^{*} Corresponding author. E-mail: likaikmust@163.com (Kai Li).

³ The authors contributed equally to this article.

71

72

73

74

75

76 77

78 79

80

81

82

83

84

86

87

89

90

91

92

93

94

95 96

97

98

99

101

102

104

105

106

107

108

109

110

111

113

114

116

117

118

119

120 121

122

126

improve the specific adsorption and catalytic processes for desulfurization (Wang et al., 2011; Xie et al., 2011). In order to enhance the adsorption and catalytic properties of activated carbon, various modification methods have been used, such as the heat treatment method (Kang et al., 2005), microwave method (Hesas et al., 2013), surface oxidation (El-Hendawy, 2003) and so on, among which the most effective is surface property modification.

In recent years, non-thermal plasma (NTP) has been increasingly used in the field of materials surface modification and new materials preparation. Compared with traditional surface modification technologies, NTP treatment is easy to operate and the process of modifying materials requires only a few minutes. It also does not produce any secondary pollution. NTP treatment can produce numerous non-equilibrium high activity particles or species. After NTP surface modification of catalyst materials, most loaded components exhibit amorphous forms, and research has found that modification has a significant impact on the size of the loaded component particles, resulting in higher metal dispersion (Di et al., 2013; Li et al., 2014; Rahemi et al., 2013b; Xu et al., 2014; Yan and Liu, 2013). Jin et al. (2014) prepared a Ni/ γ -Al₂O₃ catalyst by NTP, in order to decompose the nickel nitrate into Ni oxides. Various researchers have reported on modification of surface properties by NTP. Estifaee et al. (2014) investigated the beneficial use of NTP in the synthesis of a Ni/Al₂O₃-MgO catalyst for CH₄/CO₂ reforming. The calculated surface area of the NTP-treated sample was 11% higher after treatment. In addition, Zhang et al., 2015b found that an AC sample modified by NTP had higher mercury removal efficiency, which could be due to the increase in the number of active sites after NTP modification, including carbonyl groups (C=O) and ester groups (C(O) - O - C).

Although a number of studies have reported on NTP surface modification of catalyst materials, research on surface modification of carbon materials by NTP for H_2S removal has been rarely reported. The mechanism of NTP modification also needs further study.

There are many methods to generate NTP, such as glow discharge, corona discharge, RF microwave discharge, and dielectric barrier discharge (DBD). Among these methods, DBD has been frequently used for the surface modification of carbonbased catalysts (Kodama et al., 2002; Kodama and Sekiguchi, 2006; Zhang et al., 2015a). NTP can introduce different functional groups by transformation of the discharge gas (Chen et al., 2013a; Estifaee et al., 2014; Rahemi et al., 2013a). Previous research (Li et al., 2016) showed that NH₃-plasma could introduce aminofunctional groups, which could enhance desulfurization performance. In this work, NH₃-plasma generated by DBD was used to improve the adsorption/oxidation capacity of AC. We studied the influence of treatment conditions on the catalyst structure and physicochemical properties. Samples were characterized by the methods of X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis and in-situ FTIR.

1. Experimental

1.1. Materials

Walnut shell-based activated carbon was used in this study. Walnut shells were calcined under nitrogen at 973.15 K for

1 hr with the heating rate of 278.15 K/min. Then the sample 128 was sieved to 40-60 mesh size, mixed with KOH at the ratio 129 of 2:1, calcined in nitrogen at 973.15 K for 1 hr and washed 130 with distilled water to a constant pH, and lastly dried at 131 383.15 K for 3–4 hr. The material was designated as WSAC. In $^{\,132}$ our previous study, microwave-treated coal-based AC cata- 133 lysts combined with metal oxides were prepared by a sol-gel 134 method for removal of carbon disulfide (COS) and carbonyl 135 sulfide (CS₂) (Ning et al., 2012). In the present work, WSAC 136 loaded with 5 wt% Fe oxide was prepared by a coprecipitation 137 method where the activated carbon was mixed with a 138 colloid solution (analytical grade Fe(NO₃)₃·9H₂O solution and 139 Na₂CO₃ solution were used as the colloid solution) under 140 ultrasonication for 30 min, dried at 100°C in a blast drying 141 oven, and calcined at 573.15 K for 3 hr in nitrogen. Finally, in 142 order to introduce alkaline species on the activated carbon 143 surface, which are beneficial for H2S removal (Meljac et al., 144 2004; Yan et al., 2004), the catalyst was immersed in KOH at the 145 KOH:WSAC ratio of 13%, kept under ultrasonication for 146 30 min, and then dried for 3 hr at 373.15 K. The catalyst was 147 designated as Fe/WSAC.

1.2. Non-thermal plasma treatment

In this study, a coaxial cylinder type dielectric barrier discharge 150 (DBD) non-thermal plasma reactor was used for surface 151 modification. As Fig. 1a shows the coaxial cylinder-type reactor, 152 consisting of the dielectric barrier (glass tube: inner diameter 153 14 mm, outer diameter 17 mm) and the discharge electrode. 154 The dielectric barrier is located between the inner high voltage 155 electrode (stainless steel tube, diameter 3 mm) and a grounded 156 electrode wrapped on the outer wall. The reactor controls the 157 size of the discharge gap by changing the diameter of the high 158 voltage electrode. The width of the grounded electrode can also 159 be changed to control the length of the discharge area.

149

171

A schematic diagram of the NTP treatment is shown in 161 Fig. 1b. The power source used for DBD is a high-frequency 162 plasma generator (CTP-2000P, Nanjing Suman Plasma Co., 163 China) with adjustable frequency (5–25 kHz) and adjustable 164 output amplitude (0–30 kV). The plasma was generated with a 165 discharge output voltage (kV) of 2.4–8.0 kV (input voltage (V) of 166 10–40 V). The frequency was 7.8 kHz, and a 0.1 g sample was 167 placed in the reactor under NH₃ for each experiment. In this 168 paper, Fe/WSAC-10 min-5.6 kV means a sample modified for 169 10 min with output voltage of 5.6 kV.

1.3. Adsorbent characterization

The in-situ Fourier transform infrared spectra (in-situ FTIR) 172 were recorded on a Thermo Fisher IS50 (IS50, Thermo Fisher 173 Scientific, USA) spectrometer equipped with a temperature- 174 controllable diffuse reflection chamber and a high sensitivity 175 mercury cadmium telluride (MCT) detector. The sample was 176 placed in a micro sample holder. All the spectra were deter- 177 mined by accumulating 32 scans at a resolution of 4/cm. 178 A background spectrum was taken at 333.15 K before each 179 measurement. After this, a gas mixture containing 500 ppm 180 $\rm H_2S$ was fed at a flow rate of 60 mL/min.

X-ray photoelectron spectroscopy (XPS) (PHI Quantera II, 182 PHYCHEMI, China) was performed using Al K α radiation with 183

Download English Version:

https://daneshyari.com/en/article/8865692

Download Persian Version:

https://daneshyari.com/article/8865692

<u>Daneshyari.com</u>