Accepted Manuscript

Geology and geochemistry of the Xiaoshanba bauxite deposit, Central Guizhou Province, SW China: Implications for the behavior of trace and rare earth elements JOURNAL OF GEOCHEMICAL EXPLORATION

Author of the Control of the C

Kun-Yue Ling, Xiao-Qing Zhu, Hao-Shu Tang, Sheng-Jiang Du, Jing Gu

PII: S0375-6742(16)30284-9

DOI: doi:10.1016/j.gexplo.2018.03.007

Reference: GEXPLO 6120

To appear in: Journal of Geochemical Exploration

Received date: 1 November 2016 Revised date: 9 March 2018 Accepted date: 12 March 2018

Please cite this article as: Kun-Yue Ling, Xiao-Qing Zhu, Hao-Shu Tang, Sheng-Jiang Du, Jing Gu, Geology and geochemistry of the Xiaoshanba bauxite deposit, Central Guizhou Province, SW China: Implications for the behavior of trace and rare earth elements. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Gexplo(2017), doi:10.1016/j.gexplo.2018.03.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Geology and geochemistry of the Xiaoshanba bauxite deposit, Central Guizhou

Province, SW China: Implications for the behavior of trace and rare earth elements

Kun-Yue Ling a, Xiao-Qing Zhu a,*, Hao-Shu Tang a,*, Sheng-Jiang Du b, Jing Gu a

ABSTRACT

In China, bauxite is mainly of the karst type. Karst bauxite deposits in Central Guizhou are widely distributed in the Qingzhen, Xiuwen, and Zunyi districts. The Xiaoshanba deposit is located in the Xiuwen district and is hosted in the Lower Carboniferous Jiujialu Formation. It shows parallel unconformity with the overlying and underlying strata. The main chemical contents of the bauxite ore in the Xiuwen district is Al₂O₃ (55.7 to 73.5 wt. %), followed by SiO₂, Fe₂O₃, TiO₂, CaO, MgO, S, P, etc. There are obvious enrichments in rare earth elements (REEs) and immobile trace elements (such as Ti, Nb, Zr, Hf, Ta, and Th) in the Al-bearing rocks.

The mass change calculation (MC) is an effective means of investigating the relative mobility of elements. Here we present the multiples of mass change calculation (MMC), which represents an improvement over the MC, and is effective for element mobile investigations. The MMC results for REEs of the Xiaohsanba Al-bearing rocks showed grouping phenomenon, in which REEs were divided into four groups (Group A: La–Ce–Pr–Nd; Group B: Pm–Sm–Eu–Gd; Group C: Gd–Tb–Dy–Ho, and Group D: Er–Tm–Yb–Lu) and showed different fractionation trends in the MMC curves. The tetrad characteristic of the REEs (tetrad effects) most likely induced the special grouping phenomenon. During bauxite mineralization, REE fractionations caused by mineral control, especially the widespread distribution of accessory minerals that are rich in REEs such as Ti-dioxide minerals (i.e., TiO₂ such as rutile and anatase) and zircon, and water–rock interactions resulted in the REE grouping phenomenon in the Xiaoshanba profile.

The majority of these immobile elements tend to concentrate in the accessory minerals of bauxite, and barely any elements (except Li and Ga) seem associated with the ore-forming minerals. For instance, Ti-dioxide minerals played an important role in the accumulation of some elements, such as Ti, V, Nb, and Ta, etc. Another important mineral was zircon, which is rich in Zr, Hf, and Th, etc. In general, there were two main factors that influence the content of immobile elements in the karst bauxite profile: (a) the chemical composition of the precursor rock (the higher the content of immobile elements in the parent rock, the higher the content of accessory minerals and immobile elements in bauxite), and (b) the weathering degree of the precursor rock (the stronger the degree of weathering, the higher the content of accessory minerals and immobile elements in bauxite).

Keywords: Karst bauxite; Central Guizhou Province; Mass change calculation; immobile element

1. Introduction

Bauxite is the primary raw material used to produce aluminum and it is abundant in nature. Bauxite deposits can be classified into three categories according to their occurrence status and genesis, i.e., lateritic, karst, and Tikhvin-type bauxite. Karst and lateritic are bauxite deposits that overlie carbonate and aluminosilicate rocks,

^a State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

^b Guizhou Geological Survey, Bureau of Geology and Mineral Exploration and Development of Guizhou Province, Guiyang 550005, China

^{*} Corresponding author. 99th Linchengxi Road, Guiyang 550081, China. Tel.: +86 851 8589 1701. E-mail address: lingkunyue@mail.gyig.ac.cn; zhuxqcas@sohu.com; tanghaoshu@163.com

Download English Version:

https://daneshyari.com/en/article/8865893

Download Persian Version:

https://daneshyari.com/article/8865893

Daneshyari.com