Accepted Manuscript

Microbial Removal of Toxic Metals From a Heavily Polluted Soil

Marina Nicolova, Irena Spasova, Plamen Georgiev, Stoyan Groudev

PII: S0375-6742(16)30293-X

DOI: doi:10.1016/j.gexplo.2016.11.003

Reference: GEXPLO 5843

To appear in: Journal of Geochemical Exploration

Received date: 1 March 2016 Revised date: 27 July 2016 Accepted date: 4 November 2016

Please cite this article as: Nicolova, Marina, Spasova, Irena, Georgiev, Plamen, Groudev, Stoyan, Microbial Removal of Toxic Metals From a Heavily Polluted Soil, *Journal of Geochemical Exploration* (2016), doi:10.1016/j.gexplo.2016.11.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUS

MICROBIAL REMOVAL OF TOXIC METALS FROM A

HEAVILY POLLUTED SOIL

Marina Nicolova, Irena Spasova, Plamen Georgiev, Stoyan Groudev

University of Mining and Geology "Saint Ivan Rilski", Sofia 1700, Bulgaria

Abstract: Samples of a leached cinnamonic forest soil heavily polluted with uranium and

some toxic heavy metals (mainly copper, zinc and cadmium) were subjected to cleaning by

means of bioleaching with acidophilic chemolithotrophic bacteria. The leaching of the soil

was performed by stimulating the activity of these bacteria to leach and remove the pollutants

from the horizon A to the deeply located horizon B2 in which pollutants were precipitated by

stimulating the activity of the indigenous sulphate-reducing bacteria. The treatment was

carried out in a green house in which several plots containing 150 kg of soil each were

constructed. The effect of some essential environmental factors such as pH, humidity,

temperature and contents of nutrients on the cleaning process was studied. It was found that

under optimal conditions the content of pollutants were decreased below the relevant

permissible levels within a period of 170 days. The soil cleaned in this way was characterized

by a much higher production of biomass of different plants (alfalfa, clover, red fescue, vetch)

than the untreated polluted soil.

Keywords: soil clean up; soil bioremediation; chemolithotrophic bacteria

Introduction

The pollution of waters and soils by toxic heavy metals is a serious environmental problem in

many countries, especially in these with intensive industrial development and/or with a large-

scale recovery of such metals from the relevant mineral deposits. The pollution is due to

1

Download English Version:

https://daneshyari.com/en/article/8866244

Download Persian Version:

https://daneshyari.com/article/8866244

Daneshyari.com