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A B S T R A C T

Global monitoring of soil moisture and snow is now available through various satellite observations from optical,
microwave, and gravitational sensors. However, very few modeling frameworks exist that conjointly use the
above sensors to produce mutually and physically consistent earth system records. To this goal, a prototype of
multi-sensor land data assimilation system is developed by linking the Community Land Model version 4 (CLM4)
and a series of forward models with the Data Assimilation Research Testbed (DART). The deterministic Ensemble
Adjustment Kalman Filter (EAKF) within the DART is utilized to estimate global soil moisture and snow by
assimilating brightness temperature, snow cover fraction, and daily total water storage observations from the
Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), Moderate Resolution Imaging
Spectroradiometer (MODIS), and Gravity Recovery and Climate Experiment (GRACE), respectively. A 40-
member of Community Atmosphere Model version 4 (CAM4) reanalysis is adopted to introduce ensemble spread
in CLM4 land states and some methods are used to reduce the computational load. Data assimilation with
different combinations of sensors is implemented for 2003–2009 to investigate individual contributions from
different satellite observations. Evaluation results and cross-comparison of open-loop and data assimilation cases
suggest that 1) assimilation of MODIS snow cover fraction slightly improves snow estimation in mid and high
latitudes; 2) lower and higher frequencies of AMSR-E brightness temperature play complementary roles in
improving global soil moisture and snow estimation; 3) assimilation of GRACE tends to degrade soil moisture
estimation but poses potential in improving snow depth estimation in most high-latitude regions. Generally, the
combination of MODIS, GRACE, and AMSR-E observations with regard to spatial locations holds promise to
provide a robust global soil moisture and snow estimation through the multi-sensor land data assimilation
system.

1. Introduction

Soil moisture and snow have long been recognized as essential
components in the land-atmosphere interactions, and play critical roles
as initial conditions in weather forecast and seasonal predictions
(Barnett et al., 1989; Dirmeyer et al., 2006; Drusch, 2007; Dutra et al.,
2012; Lin et al., 2016). However, high quality global soil moisture and
snow datasets are lacking, and limitations exist in conventional acqui-
sition approaches like ground measurement, remote sensing (Che et al.,
2016; Dai et al., 2012), and land surface simulation (Entin et al., 1999;
Loew et al., 2013; Romano, 2014; Snauffer et al., 2016). Nevertheless,
land data assimilation (DA) that constrains model simulations using
satellite observations is expected to produce the most reliable estimates
of soil moisture and snow with a wide range of spatiotemporal coverage

and resolution. Indeed, the past decade has seen many such efforts (Che
et al., 2014; Forman et al., 2012; Han et al., 2016; Qin et al., 2009;
Reichle et al., 2002; Su et al., 2008).

Microwave remote sensing is commonly used in large scale soil
moisture monitoring due to its advantage in penetration depth and
small sensitivity to atmosphere vapor. Some widely used global soil
moisture retrievals are from AMSR-E (Advanced Microwave Scanning
Radiometer for Earth Observing System) (Koike et al., 2004; Njoku
et al., 2003; Owe et al., 2008), ASCAT (METOP-A Advanced Scatte-
rometer) (Bartalis et al., 2007), SMOS (Soil Moisture and Ocean sali-
nity) (Kerr et al., 2016), and SMAP (Soil Moisture Active and Passive)
(Entekhabi et al., 2014). In terms of snow, while passive and active
microwave are also used to estimate snow mass (Chang et al., 1982; Che
et al., 2012, 2016; Dai et al., 2012), visible and near-infrared signals are
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often used to detect snow extent over most of land surfaces (Hall et al.,
2002). However, uncertainties and biases are commonly observed in
satellite retrieved soil moisture (Al-Yaari et al., 2014; Jackson et al.,
2010), snow cover fraction (SCF) or snow water equivalent under cer-
tain circumstances (Foster et al., 2005; Hall and Riggs, 2007). There-
fore, some studies attempt to directly assimilate microwave brightness
temperature (TB) observations using a radiative transfer model for soil
moisture estimation, and key model parameters are either simulta-
neously updated with land states (Han et al., 2016; Moradkhani et al.,
2005; Qin et al., 2009) or pre-calibrated prior to data assimilation (De
Lannoy and Reichle, 2016; De Lannoy et al., 2013; Yang et al., 2007;
Zhao et al., 2016). There are also a series of data assimilation ex-
plorations trying to improve snow estimation by assimilating either
MODIS SCF (De Lannoy et al., 2012; Su et al., 2008) or AMSR-E TB
(Bateni et al., 2015; Che et al., 2014; Kwon et al., 2016). In addition to
satellite products from optical and microwave sensors, the Gravity
Recovery and Climate Experiment (GRACE) satellites provide ob-
servations on the total water storage (TWS) changes over lands, which
includes canopy water, snow, soil moisture, surface water, and
groundwater (Rodell and Famiglietti, 2001). The relative low spatial
resolution and difficulty in discriminating different water components
remain a major challenge in hydrological applications, and one way to
make use of GRACE is through land data assimilation. In fact, the past
years have seen many studies that assimilate GRACE TWS observations
aiming to further improve soil moisture (Li et al., 2012) and snow
(Forman et al., 2012; Houborg et al., 2012; Su et al., 2010) estimates.
However, the GRACE assimilation tends to have a mixed performance
with regard to spatial locations (Kumar et al., 2016).

Land surface models, e.g., the Community Land Model version 4
(CLM4; Oleson et al. (2010)), play a complementary role in providing
spatiotemporally continuous estimates of land states. However, the
pure model simulations are known to be biased (Cai et al., 2014; Du
et al., 2014; Long et al., 2013; Toure et al., 2016), and the past years
have seen many efforts in improving CLM soil moisture and snow es-
timation through land DA using the aforementioned AMSR-E and
MODIS observations. Zhang et al. (2014) first linked CLM4 and the Data
Assimilation Research Testbed (DART) to assimilate MODIS SCF and
found the snow estimate is much improved along the snowline near
lower–middle-latitudes while marginal over higher-latitudes where
snow cover approaches 100%. Based on the same framework, Kwon
et al. (2016) assimilated AMSR-E brightness temperature into CLM for
snow depth estimation and found improvements are expected when
model states and parameters are simultaneously updated following a so-
called rule-based scheme, in which prior estimates are updated de-
pending on their correlation with predicted TB within the ensemble. In
terms of soil moisture, Zhao et al. (2016) assimilated AMSR-E bright-
ness temperature through a radiative transfer model by using pre-

calibrated model parameters and improvements are seen in multi-layer
soil moisture over most of the selected sub-regions over the globe.

While a single satellite sensor is unable to guarantee consistent
improvements in certain land state estimates through DA, the above
studies do point to a potential of combining optical, microwave, and
gravitational sensors in a land DA system to improve soil moisture and
snow estimates under various conditions. There are recently some
studies to assimilate multiple satellite observations at local scales
(Huang et al., 2016), while few of them have extended this research to
regional and global scales. To this goal, we have developed a prototype
multi-sensor global land DA system based on the CLM4-DART frame-
work. Specifically, this study intends to explore the joint assimilation of
satellite observations from AMSR-E TB, MODIS SCF, and GRACE TWS,
and aims to achieve a robust global soil moisture and snow estimation.

This paper is organized as follows. The CLM4-DART multi-sensor
land DA system and the integration of satellite sensors are detailed in
Section 2. Section 3 presents data assimilation experiments using dif-
ferent sensor-combinations, followed by global evaluation of surface/
root zone soil moisture and snow depth. Section 4 discusses individual
sensor's contributions, and finally, a summary is provided in Section 5.

2. Methodology and data

2.1. The CLM4-DART-based multi-sensor land data assimilation system

A prototype of multi-sensor land data assimilation system is devel-
oped by using CLM4-DART and complementary satellite observations.
A general schematic flow of this DA framework is shown in Fig. 1.
Model predictions and DART assimilations are implemented grid by
grid in a parallel manner. For a certain grid-cell, following steps are
taken in a typical assimilation cycle.

1) Given an ensemble of initial conditions and atmospheric forcing,
CLM4 first simulates an ensemble of land states (including multi-
layer snow thickness, snow temperature, soil temperature, soil
moisture, and groundwater) and their characteristics (e.g. snow
density, grain radius, and wetness), which are preserved in restart
files at a daily basis. Soil and snow layering information is detailed
in Section 2.2.

2) All the relevant variables, as shown in the second column of Table 1,
will be transferred into the DART sequence.

3) Whenever a satellite observation is available, the related variables
will then be fed into the corresponding forward model to produce an
observational estimate.

4) The deterministic Ensemble Adjustment Kalman Filter (EAKF)
(Anderson, 2001) in DART will then perform data assimilation and
the calculated increments will be applied to both observed and

Fig. 1. Flowchart of the CLM4-DART multi-sensor land data assimilation system.
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