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A B S T R A C T

We have mapped the broad groups of crops grown each summer and winter, from 1987 to 2017, for a 300,000-
km2 region of Queensland, Australia. These maps are part of a legislated decision-making process for the pro-
tection of prime agricultural land. For summer, the two groups of crops are ‘Coarse-grain & Pulse’ and ‘Cotton’.
For winter, the two groups of crops are ‘Cereal’ and ‘Pulse’. Non-crop groups, present in both summer and winter,
are ‘Bare soil’ and ‘Other’ (comprising pastures, woody vegetation, and crop residues). The foundation of the
maps is time-series modelling—specifically, applying the concepts of geostatistics in the temporal domain—to
model the variation in land-surface phenology within a growing season. The time-series model is flexible, robust,
parsimonious, parallelisable, and able to deal with irregular observations. We combined satellite imagery from
the Landsat sensors, as well as, when available, Sentinel-2A and MODIS (with the last two reprojected to the 30-
m grid of Landsat). We applied the time-series model pixel-wise across the study region, to three variables
derived from satellite imagery gathered for an individual growing season: enhanced vegetation index, and the
sub-pixel proportions of bare-ground and non-photosynthetic vegetation. Weekly-averaged predicted phenolo-
gical metrics then served as explanatory variables in a tiered, tree-based classification model, for the prediction
of the groups. The classification model comprised two expert rules and two random forests. Prior to fitting the
classification model, geospatial object-based image analysis was used to change the scale of analysis from in-
dividual pixels to (approximately) field-based segments. From the perspective of a map-user, in any given
growing season we predicted ‘Coarse-grain & Pulse’ correctly in 79% of cases; the values for ‘Cotton’, ‘Cereal’,
and ‘Pulse’ were 90%, 84%, and 73%, respectively; ‘Bare soil’ was 72% in summer, and 88% in winter. ‘Other’
was the most accurately mapped group (98% correct in summer, and 99% correct in winter).

1. Introduction

With Earth's human population currently increasing by approxi-
mately 83-million per year (UNDESA, 2015), food-supply and the
management of limited terrestrial resources are critical issues for the
coming decades (Godfray et al., 2010). As part of its Sustainable De-
velopment Goals, the United Nations wishes to ‘end hunger, achieve
food security and improved nutrition and promote sustainable agri-
culture’ by 2030 (United Nations, 2015). To achieve this goal, it will
become increasingly important for policy-makers to know where and
when particular crops are grown. This knowledge will be able to inform
diverse subjects such as: mechanistic models of water quality (Carroll
et al., 2012); debate about competing land-uses (Lambin and Meyfroidt,
2011); understanding the potential for biofuel production (Beringer
et al., 2011); the logistics of commodity transportation (Gurning and
Cahoon, 2011); and the management of financial risk (Bokusheva et al.,

2016).
It has long been recognised that the spectral characteristics of ve-

getation, particularly actively growing crops, can be detected by Earth-
observing satellites. For example, Tucker and Sellers (1986) promoted
the analysis of multiple satellite images per growing season, to reliably
characterise the temporal evolution of primary production. Early work
with optical satellites in the 1980s and 1990s was often limited by the
1.1-km spatial resolution of the daily images scanned by Advanced Very
High Resolution Radiometer (AVHRR) instruments (Cracknell, 1997),
or by the cost of obtaining cloud-free Landsat images (30-m spatial
resolution, 16-day temporal resolution) (Wulder et al., 2012).

In the 2000s two events broke the constraints to operational crop-
mapping, using data from Earth-observing satellites. First, the Moderate
Resolution Imaging Spectroradiometer (MODIS) satellites were laun-
ched. These deliver free imagery that is useful for vegetation mon-
itoring, and do so at a finer spatial resolution (250–500m) than
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AVHRR. To obtain cloud-free data, contemporary studies would apply a
standardising atmospheric correction to AVHRR or MODIS imagery,
followed by compositing over a particular time interval (Van Leeuwen
et al., 1999). The resulting stack of composite images enabled large-
scale crop-mapping studies (Becker-Reshef et al., 2010; Estel et al.,
2016). The second event was the opening of the vast Landsat archive by
the United States Geological Survey in 2008 (Wulder et al., 2012),
which enabled research at a spatial resolution more compatible with
crop management, delving as far back as the 1970s. The recently
launched Sentinel-2 satellites, which are spectrally similar to Landsat,
will be increasingly used for vegetation monitoring. One of the chal-
lenges for the remote-sensing community is to combine multi-sensor
imagery into a single coherent product, to create what Wulder et al.
(2015) termed a ‘virtual constellation’. For example, a method exists to
adjust MODIS reflectance so that it estimates Landsat reflectance (Gao
et al., 2006), while Flood (2017) demonstrated how Sentinel-2A re-
flectance can be adjusted to estimate that of Landsat.

Lhermitte et al. (2011) proposed that the temporal variation in a
stack of satellite imagery—or some derivation thereof, such as a vege-
tation index—can be summarised in three ways: (i) distance measures
on the original data (e.g. correlation coefficients); (ii) transformations
of the original data to reduce dimensionality (e.g. principal component
analysis); or (iii) metric-based approaches, which summarise temporal
variation as a set of parameters. Missing data, which can be common in
a stack of satellite imagery, will create problems for (i) and (ii), al-
though Yan and Roy (2015) presented a promising solution. Applica-
tions based on (iii)—e.g. the HANTS (Verhoef et al., 1996) and
TIMESAT (Jönsson and Eklundh, 2004) algorithms—have been tailored
to deal with missing data, while simultaneously enabling a link between
time-series modelling and land-surface phenology. Further research
into this kind of time-series modelling is justified, because the most
appropriate model may be context-specific (Atkinson et al., 2012). We
contend that an appropriate time-series model for crop-mapping will be
flexible, robust, parsimonious, parallelisable, and hold no assumption
of regular observations (Table 1).

Geostatistical concepts, known for their spatial applications (Van
der Meer, 2012), offer an alternative to HANTS and TIMESAT for time-
series modelling of the data from Earth-observing satellites. When ap-
plied pixel by pixel within an image stack, a geostatistics-based time-
series model can satisfy all five aspects of Table 1. The fundamentals of
geostatistics (Matheron, 1963)—autocorrelation, variograms, and kri-
ging—are methods familiar enough to have been thoroughly described
in textbooks, e.g. Webster and Oliver (2001). Some ideas for applying
geostatistics temporally, in the context of phenology, were explored by
Pringle (2013).

As well as summarising temporal variation, there are two further
important considerations for crop-mapping. The first is the classifica-
tion model used to predict the location of actively growing crops. The
classification model takes as input the phenological metrics and returns
a prediction of the most-probable group of vegetative cover (if any) at a
particular time and place. An interesting recent trend is the use of tiered

models for classification. For example, in the model of Massey et al.
(2017), a first tier distinguished areas of ‘Fallow’ from ‘Cropland’, a
second tier split ‘Cropland’ into either ‘Alfalfa’ or ‘Cotton, Rice’, and a
third tier split ‘Cotton, Rice’ into its constituents. Similar ideas have
been presented for crop-mapping by Bellón et al. (2017) and
Lebourgeois et al. (2017). An advantage of this structure is that the top
tiers might take the form of simple expert-elicited rules that filter easy-
to-identify cases, leaving an automated classifier to work on the subset
of more-challenging patterns. One of the pit-falls of a tiered model is
that the outcomes of a particular tier must be conditional on the pre-
ceding tier(s).

The other consideration is the spatial scale at which we create and
apply the classification model. Landholders conduct cropping activities
within homogeneous management units, i.e. at the spatial scale of a
field. It therefore makes sense for the classification model to be fitted
and applied at field-scale, rather than pixel-scale. During the last
decade there has been an increasing use of geospatial object-based
image analysis (GEOBIA; Blaschke, 2010) as a means of changing the
scale of spatial data; it has the added advantage of reducing data vo-
lumes. In the context of crop-mapping, GEOBIA represents a way to
allocate a group of contiguous pixels into an approximation of a field.
Notable recent crop-mapping studies to have used GEOBIA are Peña-
Barragán et al. (2011), Maxwell and Sylvester (2012), and Schmidt
et al. (2016).

The above discussion elucidates some of our tenets for crop-map-
ping: combining observations from different sensors; appropriate time-
series modelling; and using a tiered classification model to predict the
occurrence of different groups of crops at the spatial scale of a field (as
distinct from pixel-scale). To be ultimately useful for government
policy, these tenets need to be realised within an operational frame-
work, i.e. be applicable in an on-going way, over a large area, with
known accuracy. Operational crop-mapping has been successfully de-
monstrated with MODIS imagery (Becker-Reshef et al., 2010; Estel
et al., 2016; Massey et al., 2017), but this is more difficult with Landsat,
due to the vastly increased data loads, and the complex landscape
variability these satellites reveal. While the annual delivery of the
Cropland Data Layer in the United States is an exemplar—a product
that combines imagery from a variety of sources, at a Landsat-like
spatial resolution (Johnson and Mueller, 2010)—many Landsat-based
crop-mapping studies have ignored operational considerations. There
are studies on relatively small areas over few years (Vieira et al., 2012;
Li et al., 2015; Wang et al., 2017), studies on large areas over few years
(Matton et al., 2015; Song et al., 2017), or small areas over many years
(Maxwell and Sylvester, 2012). Our earlier Landsat-based attempt at
operational crop-mapping (Schmidt et al., 2016) created field-scale
predictions over a large area and over many years, but was limited by
the binary ‘Crop’ versus ‘Other’ classification model.

The principal aim of this study was to produce biannual maps of
broad groups of crops (Table 2), over a 30-year period—maps that can
ultimately serve as instruments of government policy. To achieve this,
we posited four minor aims: (1) to summarise growing-season

Table 1
Desirable aspects for a time-series model that characterises land-surface phe-
nology.

Aspect Comment

Flexible There are potentially billions of different cases, not just the bell-
shaped fluctuations of a crop, but also, conceivably, negligible
variation.

Robust We must minimise the influence of outliers, which arise due to
factors independent of the land-surface (e.g. imperfectly masked
cloud-shadows or topographic effects).

Parsimonious Each parameter of the model must be justified.
Parallelisable The model must be fitted within a reasonable amount of

computing time.
Irregular The model must hold no assumption of regular observations.

Table 2
The groups (crop and non-crop) to be mapped; the cropping-phase when they
occur (‘S’=Summer, ‘W’=Winter); prior probability of occurrence; and their
major constituents (NA = not applicable).

Group Phase Prior probability Constituents

Coarse-grain &
Pulse crops

S 0.072 Sorghum, maize, mungbean,
soybean

Cotton crop S 0.018 Cotton
Cereal crop W 0.077 Wheat, barley, oats
Pulse crop W 0.013 Chickpea
Bare soil S,W 0.030 NA
Other S,W 0.880 Pastures, woody vegetation,

crop residues

M.J. Pringle et al. Remote Sensing of Environment 216 (2018) 183–200

184



Download English Version:

https://daneshyari.com/en/article/8866410

Download Persian Version:

https://daneshyari.com/article/8866410

Daneshyari.com

https://daneshyari.com/en/article/8866410
https://daneshyari.com/article/8866410
https://daneshyari.com

