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Context information is rarely used in the object-based landcover classification. Previous models that attempted
to utilize this information usually required the user to input empirical values for critical model parameters,
CRF leading to less optimal performance. Multi-view image information is useful for improving classification accu-

DCNN racy, but the methods to assimilate multi-view information to make it usable for context driven models have not
‘?Vliltﬁn d been explored in the literature. Here we propose a novel method to exploit the multi-view information for
Classification generating class membership probability. Moreover, we develop a new conditional random field model to in-
SVM tegrate multi-view information and context information to further improve landcover classification accuracy.
RF This model does not require the user to manually input parameters because all parameters in the Conditional
GMM Random Field (CRF) model are fully learned from the training dataset using the gradient descent approach.

Using multi-view data extracted from small Unmanned Aerial Systems (UASs), we experimented with Gaussian
Mixed Model (GMM), Random Forest (RF), Support Vector Machine (SVM) and Deep Convolutional Neural
Networks (DCNN) classifiers to test model performance. The results showed that our model improved average
overall accuracies from 58.3% to 74.7% for the GMM classifier, 75.8% to 87.3% for the RF classifier, 75.0% to
84.4% for the SVM classifier and 80.3% to 86.3% for the DCNN classifier. Although the degree of improvement
may depend on the specific classifier respectively, the proposed model can significantly improve classification
accuracy irrespective of classifier type.

1. Introduction

Small Unmanned Aerial Systems (UAS) have rapidly growing roles
in precision agriculture and natural resource management (Alsalam
et al., 2017; McCabe et al., 2016; Miillerova et al., 2017; Pande-Chhetri
et al., 2017), because of several advantages of UAS over other remote
sensing platforms. For example, compared to space-borne platforms,
UAS can fly at much lower altitudes, and thus are able to generate re-
mote sensing images with sub-decimeter resolution (Rango et al.,
2006). This feature is important, because even though civilian remote
sensing satellites can collect images with resolution as high as 25 cm
(e.g. WorldView-3), this resolution is still insufficient for some natural
resource management applications (Lu and He, 2017). Even though
piloted aircrafts can collect images with a resolution comparable to UAS
images (e.g., 5-6 cm), high cost, operational logistics and pilot safety
associated with piloted aircraft missions make UAS adoption for local
scale applications desirable (Rango et al., 2006). In addition, flight

route and time can be flexibly controlled by the UAS operator, making
UAS a preferable remote sensing platform for some natural resource
management tasks such as invasive plant species control that require
timely and repetitive monitoring of landcovers.

Many natural resource management applications require timely and
accurate mapping techniques to monitor landscape scale changes such
as non-native plant invasions, insect outbreaks or disease, and to de-
velop and apply management efforts (Mulla, 2013; Zhang et al., 2002).
For invasive plant management in particular, accurate maps facilitate
monitoring population dynamics as well as precision targeting of in-
fested areas. Thus, UAS technology may fulfill a critical need for in-
vasive plant management but models are needed to accurately de-
termine landcover from UAS-based images.

Object-Based Image Analysis (OBIA) is commonly used for proces-
sing the very high-resolution images collected by UASs (Blaschke et al.,
2014; Chen et al., 2018; Liu and Abd-Elrahman, 2018a,b; Liu et al.,
2018; Pande-Chhetri et al., 2017). Compared to pixel-based
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approaches, OBIA usually not only creates more visually appealing re-
sults in mitigating the salt and pepper effect but also obtains compar-
able if not higher classification accuracy (Cleve et al., 2008; Fu et al.,
2017; Gao et al., 2012; Ma et al., 2017). A common workflow of OBIA
for processing UAS images is 1) Generate an orthoimagery from in-
dividual UAS-collected images using an off-the-shelf package (e.g.,
Agisoft, Pix4D or VisualSFM), 2) Segment the orthoimagery into in-
dividual objects with appropriately selected parameter values for seg-
mentation (e.g., scale, shape, and compactness for eCognition), 3) Ex-
tract features (e.g. mean spectral band values of object pixels) for each
object, and 4) Train and apply a classifier (e.g., SVM, random forest) for
classification of each object. In this common workflow, all the in-
formation used for classification in OBIA comes from orthoimagery
alone. One of the primary drawbacks of this approach is that the ori-
ginal information contained in the raw multi-view UAS images is dis-
carded, even though multi-view information has proven useful for land
cover classification in several publications (Abuelgasim et al., 1996;
Gatebe and King, 2016; Koukal et al., 2014; Su et al., 2007).

Plant functional groups often predictably co-occur (Carranza et al.,
2011; Chytry et al., 2008; Frouz, 1997), providing object context in-
formation that may be useful to predict class types. There have been
examples of applying context information to improve the classification
recently (Albert et al., 2017; Zhao et al., 2017b), but none integrate
multi-view data with context-driven models. Markov Random Field
(MRF) and Conditional Random Field (CRF) (Sutton and McCallum,
2012) are graphical models that can encode the information to model
contextual information and have already been used by few researchers
in the remote sensing community (see Table 1). Most previous studies
have used pixel-based classification (Kasetkasem et al., 2005; Li et al.,
2016; Liu et al., 2008; Zare and Gader, 2009; Zhong et al., 2014). More
recently, some of the studies in remote sensing community (Albert
et al., 2017; Zare and Gader, 2009; Zhao et al., 2017b) have focused on
objects as classification units to utilize the abundant high resolution
remote sensing images that have been generated by the technical ad-
vancements of remote sensing sensors and platforms.

Even though MRF and CRF have shown potential to improve clas-
sification accuracy with varied degree in previous studies, the gains are
generally not impressive and have been disproportionate to the greater
model sophistication, thus decreasing model utility and accessibility.
The limited improvement may be attributed to the fact that previous
models usually required the users to empirically determine and input
model parameters (see Parameter Determination column in Table 1),
which not only adds extra difficulties for using the model, but also
prevents the CRF from releasing its full classification improvement
power. In addition, various classifiers (e.g., RF, SVM, GMM in Table 1)
have been used to generate the unary terms for the MRF or CRF model,
but none of them have investigated whether using a different classifier
would have an impact on the CRF performance. Furthermore, all the
previous studies relied on approximate methods (e.g., iterated condi-
tional modes, alpha-expansion, loopy belief propagation) for model
inference to find the collective label configurations of all nodes in a
graph (see last column in Table 1), while none of them have tried exact
model inference method such as belief propagation to derive object
labels via exact marginal distribution.

Given these issues, the research objectives of this study are to:

I). Develop a fully learnable context-driven object-based classification
model. This model does not require the user to input any para-
meter values as all the parameter are automatically learned from
the training data. Such automation in parameter estimation can
greatly increase our model usability compared to other existing
models that usually require the user to empirically determine the
model parameters.

Develop a method to extract information from multi-view data to
be usable in the context driven model. Although the model de-
veloped here experiments with multi-view data, it can be generally
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applied to standard OBIA classification that use the orthoimagery

only.

III). Compare context model implementation options, including

i) Context-driven object-based classification model performance
using the DCNN, RF, SVM and GMM classifiers. Such compar-
ison can determine whether consistent improvement can be
achieved across the board with different classifiers.

ii) The belief propagation and the commonly used alpha-expansion
model inference methods to investigate whether the type of
model inference method affects context-driven model perfor-
mance for our study site.

2. Study area and materials
2.1. Study area

A study area of 700 m X 500 m was selected because it is large
enough to include all the primary land cover types that interest the land
managers, while at the same time it is small enough to facilitate quick
experiments for this study. The study area is part of a 31,000-acre ranch
in Southern Florida, that consists of tropical forage grass pastures,
palmetto wet and dry prairies, pine flatwoods and large interconnecting
marsh of native grass wetlands. This area also has cabbage palm (Sabal
palmetto) and live oak (Quercus virginiana) hammocks scattered along
creeks, gullies, and wetlands.

A portion of the study area was invaded by Cogongrass (Imperata
cylindrica) (Fig. 1, adapted with permission from Liu and Abd-
Elrahman, 2018a,b; Liu et al., 2018), a perennial rhizomatous grass that
is highly problematic, because it is not palatable for livestock, decreases
native plant biodiversity and wildlife habitat quality, and increases fire
hazard (Estrada and Flory, 2015). The U.S Army Corps of Engineers
(USACE) is involved in monitoring and treatment of the invasive ve-
getation in this area. Currently, because there is not a reliable landcover
map for this area, to treat the invasive vegetation, the entire area must
be assessed for invasive species. To evaluate the treatment effects,
considerable effort is required to locate and evaluate the target vege-
tation. Thus, an accurate landcover map in this area would greatly
improve management efficiency.

All other classes, except the shadow class in our study, were as-
signed according to the standard of vegetation classification for South
Florida natural areas (Rutchey et al., 2006). Our objective is to classify
the Cogon grass (species level) and five other community-level classes
as well as the shadow class as listed in Table 2 (This table was reprinted
with permission from Liu and Abd-Elrahman, 2018a,b; Liu et al., 2018).

2.2. UAS image acquisition and preprocessing

The images used in this study were captured by engineers from
Surveying and Mapping Branch in USACE-Jacksonville District using
the NOVA 2.1 small UAS. A flight mission designed with 83% forward
overlap and 50% sidelap was planned and implemented (Table 3,
reprinted with permission from Liu and Abd-Elrahman, 2018a,b; Liu
et al., 2018). A Canon EOS REBEL SL1 digital camera with a CCD sensor
of 3456*5184 pixels was mounted on the UAS to collect images for this
study. The images were synchronized with an onboard navigation grade
GPS receiver to provide image locations. Five ground control points
were established, including four near the four corners and one close to
the center of the study area, and used in the photogrammetric solution.

2.3. Orthoimagery creation and segmentation

The UAS images were pre-processed to correct for the change in sun
angle during the acquisition period before the orthoimagery was cre-
ated. Given an original UAS image i with zenith angle 6;, the original
UAS images were corrected as ImgCorrected; =ImgOriginal, (COS(@i)/wS(75°))
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