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A B S T R A C T

Reliable fire severity mapping is a vital resource for fire scientists and land management agencies globally.
Satellite derived pre- and post-fire differenced severity indices (ΔFSI), such as the differenced Normalised Burn
Ratio (ΔNBR), are widely used to map the severity of large wildfires. Fire severity classification is commonly
undertaken through the identification of severity class thresholds in ΔFSI. However, several shortcomings have
been identified with severity classifications using ΔFSI, including poor delineation of low fire severity classes,
and unsatisfactory performance when ΔFSI classification thresholds are applied to new landscapes. Our study
assesses the performance of the Random Forest classifier (RF) for improving the accuracy of satellite based
wildfire severity mapping across heterogeneous landscapes using Landsat imagery. We collected point based fire
severity training data (n= 10,855) from sixteen large wildfires occurring across south-eastern Australia between
2006 and 2016. The predictive accuracy of fire severity classification using ΔNBR and the RF incorporating
numerous spectral indices, was assessed using bootstrapping and cross validation. Image acquisition and index
calculation for each fire was undertaken in Google Earth Engine (GEE). Results of the bootstrapping validation
show that the RF classifier had very high classification accuracy (> 95%) for unburnt (UB), crown scorch (CS)
and crown consumption (CC) severity classes, and high classification accuracy (> 74%) for low severity classes
(crown unburnt, CU; partial crown scorch, PCS). The RF classification outperformed the ΔNBR classification for
all severity classes, increasing classification accuracy by between 6%–21%. Cross validation using independent
fires produced similar median classification accuracy as the bootstrapping validation, though the RF classifi-
cation of CU was substantially reduced to ~55%. ΔNBR, ΔNDWI and ΔNDVI were the three most important
variables in the RF model. The Landsat satellite platform used to derive the indices had little effect on classi-
fication accuracy. Maps produced using the RF classifier in GEE had similar spatial patterns in fire severity
classes as maps produced using time-consuming hand digitisation of aerial images. GEE was found to be a highly
efficient platform for image acquisition, processing and production of severity maps. Our study shows that fire
severity mapping using RF classifiers provides a robust method for broad scale mapping of fire severity across
heterogeneous landscapes. Furthermore, the GEE-based classification framework supports the operational ap-
plication of this approach in a land management agency context for the rapid production of fire severity maps.

1. Introduction

Fire is one of the dominant disturbances across terrestrial ecosys-
tems globally (Bowman et al., 2009). Fire severity is defined as the loss
of above- and below-ground organic matter and is correlated with fire
intensity within plant communities with similar vegetation structure
(Hammill and Bradstock, 2006; Keeley, 2009). Fire severity is an im-
portant component of the fire regime, as it influences the post-fire

response of plant and animal communities (Bennett et al., 2016;
Smucker et al., 2005), alters erosion and water quality (Doerr et al.,
2006; Nolan et al., 2015) and influences the likelihood of fire sup-
pression by firefighting crews (Bradstock et al., 2010). Accurate fire
severity mapping provides crucial information for policy makers, land
managers and researchers (Eidenshink et al., 2007), as well as staff
involved in incident control (e.g. post-fire impact assessments). In
particular, fire severity mapping can facilitate: (i) burnt area emergency
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response (Keeley, 2009), (ii) assessment of decadal trends in fire re-
gimes (Eidenshink et al., 2007), (iii) assessments of the effectiveness of
fire management strategies (Price and Bradstock, 2012; Thompson
et al., 2007), (iv) improved understanding of fire behaviour (Collins
et al., 2014; Holden et al., 2009), and (v) insight into fire regime effects
on biota and ecosystem processes (Bennett et al., 2016; Knox and
Clarke, 2012; Smith et al., 2016). Broad scale fire severity mapping
predominantly uses data from satellite imagery and aerial photography
(Keeley, 2009; Kolden et al., 2015; McCarthy et al., 2017), although
systematic and reliable mapping of severity is not a common process in
many countries (Kolden et al., 2015).

Fire severity mapping using satellite imagery has largely relied on
the pre- and post- fire differencing of a spectral index (SI) to derive a
single differenced fire severity index (ΔFSI) (Eidenshink et al., 2007;
Hammill and Bradstock, 2006; Veraverbeke et al., 2010). The rationale
behind this approach is that pre- and post-fire differences in the SI will
reflect the degree of environmental change due to fire, and hence fire
severity. ΔFSI may be used as a continuous measure of fire severity (e.g.
Collins et al., 2007), though often ΔFSI are classified into en-
vironmentally meaningful fire severity classes (e.g. Hammill and
Bradstock, 2006). The preferred SI used to derive the ΔFSI will vary
depending on the ecosystem characteristics or features of interest (e.g.
foliage, soil). ΔFSI derived from SI sensitive to foliage health and cover,
such as the differenced Normalised Burn Ratio (ΔNBR) (Boer et al.,
2008), tend to show a good correlation with field derived measures of
fire severity (Hammill and Bradstock, 2006; Parker et al., 2015;
Veraverbeke et al., 2010). Consequently, ΔNBR is a widely utilised
index for fire severity mapping (Lentile et al., 2006), and is favoured by
many fire management agencies (e.g. Kolden et al., 2015). Despite its
widespread use, ΔNBR has been shown to be sub-optimal for describing
fire severity in some instances (Roy et al., 2006).

The approach of fire severity classification using a single ΔFSI has a
number of limitations that restrict the application of the method across
space and time. First, ΔFSI values are not comparable across structu-
rally distinct vegetation classes (e.g. forest and shrubland; Hammill and
Bradstock, 2006; Miller et al., 2009; Parker et al., 2015). This is because
vegetation structure influences SI values (Boer et al., 2008), hence the
maximum value of a ΔFSI will be determined by pre-fire vegetation
state (Brewer et al., 2005; Miller et al., 2009; Roy et al., 2006). Con-
sequently, accurate severity classification with a single ΔFSI will re-
quire adjustments to the thresholds for each vegetation type examined
(Brewer et al., 2005; Hammill and Bradstock, 2006), which reduces the
broad scale usefulness of the approach. Second, low fire severity classes,
or classes that are a composite of fire severity effects (e.g. partial crown
scorch), can be difficult to distinguish with a single ΔFSI (Hammill and
Bradstock, 2006; Miller et al., 2009). This partially reflects limitations
in the type of change that a single SI can detect and difficulties in
distinguishing pixels with mixed cover types (Miller et al., 2009). Fire
alters a range of ecosystem properties, including foliage cover, health
and moisture content and the amount of bare soil and charcoal; each
which influence spectral reflectance (White et al., 1996). Classification
methods using empirical models that can incorporate information from
multiple ΔFSI sensitive to a range of environmental conditions as well
as SIs related to pre-fire vegetation conditions may facilitate improved
fire severity classification (e.g. Brewer et al., 2005). Physical based
models, such as Radiative Transfer Models that simulate spectral sig-
natures at the leaf and canopy scale, have also been successfully used to
predict burn severity (e.g. Composite Burn Index) from satellite ima-
gery (e.g. De Santis et al., 2009), and may outperform ΔFSI such as
ΔNBR (De Santis et al., 2010).

Machine learning (ML), defined as the application of statistical
techniques and algorithms for identifying patterns in data and making
predictions from those patterns, are now commonly applied in remote
sensing classification (Graves et al., 2016; Heydari and Mountrakis,
2018; Rogan et al., 2008). ML techniques perform better than simple
classifiers in dealing with complex interactions between scene

complexity, scale and aggregation and have improved discrimination of
classes in heterogeneous landscapes (typical in remote sensing) with
low inter-class separability and high intra-class variability (Ghimire
et al., 2012). Random Forest (RF) (Breiman, 2001) is a popular machine
learning technique, commonly applied in remote sensing (Belgiu and
Drăguţ, 2016). Frequently cited advantages of RF classifiers over other
machine learning techniques include its excellent classification results
and processing speed (Belgiu and Drăguţ, 2016; Du et al., 2015), its
ability to handle noise and outliers in complex measurement space
(Mellor et al., 2015; Rodriguez-Galiano et al., 2012), and characterize
complex variable interactions (Cutler et al., 2007). The RF classifier is
well suited to addressing fire mapping problems (e.g. Meddens et al.,
2016; Ramo and Chuvieco, 2017), as it can consider multiple en-
vironmental variables simultaneously (Hultquist et al., 2014; Meddens
et al., 2016), and has been found to be better suited for fire severity
mapping than other ML classifiers (Hultquist et al., 2014). Despite the
commonly cited advantages of ML classifiers like RF, they have rarely
been utilised for fire severity classification (Barrett et al., 2011;
Hultquist et al., 2014; Meddens et al., 2016).

Studies assessing the utility of ML classification techniques for fire
severity mapping have been limited by the size and extent of training
and validation data, and have not performed cross validation using fires
that were not included in training data (e.g. Brewer et al., 2005;
Hultquist et al., 2014; Meddens et al., 2016). Consequently, the true
utility of ML classifiers, such as RF, as a tool to reliably produce fire
severity mapping across heterogeneous landscapes has not been as-
sessed. The aim of our study was to:

(i) assess the performance of RF for classifying fire severity using
several indices derived from moderate resolution (30m) Landsat
imagery;

(ii) compare the RF classification to a single index classification using
ΔNBR, both within and outside the set of training fires;

(iii) assess the relative importance of different indices in improving fire
severity classification; and

(iv) examine how additional sampling effort from new fires can im-
prove RF classification accuracy of these fires.

2. Methods

2.1. Study area

The study included sixteen large wildfires, ranging from 1800
to> 120,000 ha in extent, that occurred between 2006 and 2016 in
Victoria, Australia (Fig. 1). The wildfires used in this study were se-
lected based on the availability of (i) high resolution (≤35 cm) visible
and infrared aerial photography captured shortly after the fire ignition
date (i.e. within ~2–3months) and (ii) Landsat imagery to produce pre-
and post-fire cloud free mosaics. Fire severity was spatially hetero-
geneous within the wildfire perimeters, covering the range of fire se-
verity classes distinguishable with aerial photography (Table 1, SM1).
The fires occurred in a range of vegetation communities including
heathlands (i.e. shrub dominated communities), open forests and
woodlands, tall forests and pine plantations. Grass and sedge dominated
communities were excluded from the study, as were arid and semi-arid
woody vegetation communities.

2.2. Fire severity data

Fire severity data used in this study for classifier training and vali-
dation was derived using aerial photo interpretation and digitisation.
High resolution visible and infrared aerial photography has been ef-
fectively used to distinguish fire severity classes (Table 1) in Australian
forests, woodlands and shrublands, with high correlations being ob-
served between photo and field based measures of fire severity
(Hammill and Bradstock, 2006; McCarthy et al., 2017). Five fire
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