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A B S T R A C T

The Mediterranean Sea exhibits a strong basin and regional scale phytoplankton variability correlated to its
semi-enclosed nature, complex orography and the variety of physical and chemical processes that regulate its
productivity. Herein, using 17 years of ocean-color composites, we investigate differences in the regional pat-
terns of interannual variability in satellite-derived chlorophyll (Chl), a proxy for phytoplankton biomass. A
neural network classification, based on the Self-Organizing Maps (SOM) analysis in the time domain, is used to
reveal regions of similar temporal variability of Chl in the Mediterranean Sea. Characteristic temporal patterns
extracted by the SOM analysis show different scales of variation that can be related to already identified
oceanographic features and biogeochemical variability in the Mediterranean Sea. Clear differences are noticed
between regions located in the Western basin and Adriatic Sea, where rivers, winter mixing and winds are known
to drive variations in primary production at regional scale and regions located in the Eastern basin, represented
by a large and rather homogeneous region. Using the SOM-defined characteristic temporal patterns of Chl, we
analyzed the regional influence of the North Atlantic Oscillation (NAO) and El Niño Southern Oscillation (ENSO)
in the long-term (> 1 year) Chl variability. Our results indicate that NAO has more influence in the Chl varia-
tions occurring in regions located in the Western basin whereas ENSO exhibits higher impact on the central
Mediterranean and Eastern basin during its positive phase. Both NAO and ENSO show non-stationary coherence
with Mediterranean Chl. The analysis also reveals a sharp regime shift occurring in 2004–2007, when NAO
changed from positive to negative values. This shift particularly affected the winter phytoplankton biomass and
it is indicative of climate driven ecosystem-level changes in the Mediterranean Sea. Our results stablish a re-
gional connection between interannual phytoplankton variability exhibited in different regions of the
Mediterranean Sea and climate variations.

1. Introduction

A major challenge in the spatial analysis of oceanic systems is to
classify and identify regions with common patterns since, unlike ter-
restrial ecosystems the sea is an intrinsically dynamical system often
with diffuse boundaries and shallow gradients (Hinchey et al., 2008).
Furthermore, numerous biological and environmental factors are non-
linearly involved in the two-way environment-organism relations in the
sea (e.g. Kavanaugh et al., 2016). Despite these difficulties, the classi-
fication of marine areas into clear cut geographical units, displaying
similar biogeochemical characteristics and/or dynamical behavior, has
become essential in the understanding of the plankton community re-
sponses to present and future climate scenarios. These represent fun-
damental abstractions of the geographical organization of life in

response to past or current physical and biological forces (Kreft and
Jetz, 2010). Biogeographical regions not only facilitate the under-
standing of the functioning of marine ecosystems but they are also
useful when trying to define indicators of the environmental state as
well as when undertaking the management of resource and conserva-
tion decisions (Spalding et al., 2007). An example of this is the Marine
Strategy Framework Directive (Directive 2008/56/EC; MSFD, 2008)
that, in order to achieve its ecosystem conservation goals, establishes
marine regions and sub-regions based on geographical and environ-
mental criteria.

Biogeographical regionalization can be based on geographic or on
ecologically relevant attributes of the abiotic (i.e., temperature, sali-
nity, eddy kinetic energy, hydrodynamics, etc.) or the biotic environ-
ment (i.e., biomass, taxonomy, size structure, etc.) from measured

https://doi.org/10.1016/j.rse.2018.05.027
Received 20 November 2017; Received in revised form 21 May 2018; Accepted 25 May 2018

⁎ Corresponding author.
E-mail address: gotzon@imedea.uib-csic.es (G. Basterretxea).

Remote Sensing of Environment 215 (2018) 7–17

0034-4257/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2018.05.027
https://doi.org/10.1016/j.rse.2018.05.027
mailto:gotzon@imedea.uib-csic.es
https://doi.org/10.1016/j.rse.2018.05.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2018.05.027&domain=pdf


records or from data obtained using various modeling approaches.
Satellite ocean-color data provides synoptic and long-term time cov-
erage, which is ideal when attempting this classification. Several ap-
proaches have been traditionally used to identify coherent areas of the
sea using ocean color and other complementary information (see Ayata
et al., 2017). Multivariate clustering methods, such as k-means analysis,
principal component analysis (PCA) or empirical orthogonal functions
(EOFs), have proven to be efficient at obtaining coherent patterns of
variation that can be explained on the basis of the main oceanographic
characteristics (D'Ortenzio and Ribera d'Alcala, 2009; Foukal and
Thomas, 2014; Yoder and Kennelly, 2003). However, these methods are
not capable of capturing the non-linear and turbulent character of the
ocean dynamics. In addition, these approaches have drawbacks when
managing datasets with missing values as they need some particular
functional relationship or assumptions about the data such as dis-
tribution normality or preservation of the variance.

The Self-Organizing Maps (SOMs) developed in the last decades is a
useful bioregionalization method since robustly clusters and identifies
patterns in large datasets (Kohonen, 1982; Vesanto and Alhoniemi,
2000). The SOM is a neural network algorithm based on unsupervised
learning that works as a nonlinear alternative to the above mentioned
linear grouping methods. While the SOM may show performance lim-
itations in some cases (Liu et al., 2006; Solidoro et al., 2007) an ad-
vantage of the algorithm is that it preserves topology, and the obtained
patterns are topologically ordered. Similar patterns are arranged to be
neighboring units on the neural network, while dissimilar patterns are
located far away from each other. In the case of biological re-
gionalization, this topological ordination permits the establishment of
similarity relationships in the dynamical behavior of each region de-
fined by the SOM classification. This method has been successfully used
in diverse climate, atmospheric and oceanographic applications (e.g.
Lachkar and Gruber, 2012; Leloup et al., 2007; Richardson et al., 2003;
Uvo, 2003). In the case of satellite ocean-color data, SOM classification
has been used for a variety of applications including the synthesis of
spatial patterns of chlorophyll (Chl) variation, the optimization of
image processing, the classification of spectral signals for subsequent
inference of phytoplankton groups, or for linking of sea-surface with
vertical profiles of chlorophyll (Ainsworth, 1999; Ben Mustapha et al.,
2014; Charantonis et al., 2015; Farikou et al., 2015; Richardson et al.,
2003; Yacoub et al., 2001). SOM classification can be applied to both
space and time domains and provides a powerful tool for diagnosing
ocean processes, as demonstrated by Liu et al. (2016).

Owing to its semi-enclosed nature in between two continents and to
its intricate orography, the Mediterranean Sea exhibits regions of highly
contrasting physical and chemical processes affecting their biological
properties (e.g. Dubois et al., 2016; Reygondeau et al., 2017; Rossi
et al., 2014). This seascape emerges from the three predominant and
interacting spatial scales of the marine flow-basin scale, sub-basin scale,
and mesoscale (Robinson et al., 2001), and from the differences in the
geochemical inputs at these scales that determine phytoplankton pro-
ductivity. The large scale factors, like the influx of nutrients by the
Atlantic jet or the water-column stratification processes, result into a
west-east oligotrophic gradient (e.g. Christaki et al., 2001; Dolan,
2000). This gradient is modulated by regional differences in terrestrial
and atmospheric loads, dynamical features emerging from exchanges
across straits and channels, as well as from mesoscale activity, frontal
dynamics and local meteorology. Regional variations in the physical
and chemical forcings generate a complex mosaic of biogeochemical
environments, particularly in areas with river outflow and/or intricate
topography. For example, enhanced Chl values along the northern
coastal areas of the Mediterranean Sea have been associated with the
impact of runoff from continental margins, vertical mixing due to the
prevailing winds, or cooling and density mixing processes as well as
persistent mesoscale dynamical features (Barale and Zin, 2000). Fur-
thermore, the influence of the runoff can extend far from the deltas of
major rivers such as the Rhone, Po or Nile, sustaining high

phytoplankton production on the Mediterranean shelves that contrasts
with the general oligotrophy prevailing in open waters (i.e. Antoine
et al., 1995; Forget and André, 2007).

Even though the dynamics and pattern of seasonal phytoplankton
variability in the Mediterranean Sea are well founded (e.g. Volpe et al.,
2012), less is known about the longer timescale variability. At this
scale, climate regulatory factors can be more important than direct
anthropogenic influence in driving primary production and phyto-
plankton composition shifts (e.g. Dandonneau et al., 2004; Martinez
et al., 2009; Rosseaux and Gregg, 2013). Several studies show that
large-scale atmospheric circulation patterns described by climatic in-
dices have an influence over ecological processes in the Mediterranean
region (see Lionello et al., 2006). Being located at the southern limit of
the North Atlantic storm tracks, the Mediterranean region is particu-
larly sensitive to interannual shifts in the trajectories of mid-latitude
cyclones that can lead to remarkable anomalies of precipitation and, to
a lesser extent, of temperature (Trigo et al., 2006). The consequences of
these climate scale changes in the dynamics of the marine ecosystem
are different to those guiding seasonal ecological change and the re-
sponse of phytoplankton to this type of variability may be spatially
variable and depending on the main factors limiting production at each
location. Indeed, the ecology-climate interaction is not always
straightforward (Stenseth et al., 2003) and climate induced interannual
variations and ecosystem shifts may depend on multi-scale processes
with interactive variability giving rise to considerable uncertainties in
the prediction of the responses of the marine ecosystems.

Previous studies have reported the influence of large-scale modes of
atmospheric variability on Chl distributions and variability in the
Mediterranean Sea (e.g. Katara et al., 2008). In the present study, we
focus on the influence of climatic forcing on the long-term (> 1 year)
regional variability of Chl in the Mediterranean Sea. Using satellite-
derived Chl datasets, we first classify the Mediterranean Sea into re-
gions of different characteristic temporal variability revealed by the
SOM analysis in the time domain. By this method, we are able to define
coherent biogeographical regions that will form the basis of our inter-
annual variability analysis. We then used cross-wavelets analysis of the
characteristic temporal Chl patterns of each SOM-defined region to
identify the coherent correlations with two of the most relevant large-
scale climate indices influencing the Mediterranean Sea, the North
Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO).

2. Materials and methods

2.1. Remotely sensed ocean-color and climate indices data

Our analysis is based on the sea surface Chl concentration (mgm−3)
data product developed by the European Space Agency Ocean-Color
Climate Change Initiative Program (ESA OC_CCI) (Sathyendranath
et al., 2017; Sathyendranath and Krasemann, 2014). This Chl data has
been tailored to the Mediterranean region by reprocessing the ocean
color CCI product with the specific regional algorithm MedOC4 (Med-
iterranean Ocean-Color 4 bands, Volpe et al., 2007). The resulting
Level-4 product is distributed by the EU Copernicus Marine Environ-
ment Monitoring Service (CMEMS) and it can be downloaded from
http://marine.copernicus.eu. This ocean-color data product is the result
of merging MODIS-Aqua, SeaWiFS and MERIS sensors and it measures
the average Chl content over the first optical depth. The analyzed Chl
time-series covers the period 1998–2014 for the Mediterranean Sea (30
to 46°N and 6°W to 37°E) and gridded 8-day temporal resolution and 1-
km spatial resolution was downloaded. In order to reduce missing data,
Chl values were first re-gridded to a 4 km regular grid and then the
remaining gaps were filled in by applying spatial and temporal linear
interpolation scheme (i.e., spanning three adjacent values).

NAO and Eastern Pacific and Central Pacific el Niño-3.4 (hereafter
ENSO) indices were obtained from the National Oceanic and
Atmospheric Administration (NOAA) Earth System Research
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