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A B S T R A C T

Precipitation products with high spatial resolution are important for basin-scale hydrological and meteorological
applications. Downscaling techniques commonly used with satellite-derived rainfall data build statistical re-
gression relationships between the precipitation and land surface characteristics to obtain rainfall estimates with
improved spatial resolution. However, these relationships tend to be extended mistakenly from the regional scale
to the hill slope scale. This paper introduces a quadratic parabolic profile (QPP) model for downscaling pre-
cipitation. The proposed technique uses a quadratic parabolic equation to express the rule for changes of pre-
cipitation with elevation. It is assumed that precipitation is the primary factor restricting vegetation growth
during the growing season. Therefore, an ordinary least square regression method is used to fit an “eleva-
tion–normalized difference vegetation index (NDVI)” function to determine the parameters of the QPP model.
This method was implemented in the Three-River Headwaters Region (TRHR) during the growing seasons of
2009–2013 for both monthly and total precipitation. The results indicated that the precipitation estimates
downscaled using the QPP method had higher accuracies than those of commonly used exponential regression,
multiple linear regression, and geographically weighted regression models. The average root mean square errors
(RMSEs) and mean absolute percent errors (MAPEs) of total precipitation during the growing season of the
commonly used models were 17%–69% and 17%–92% higher, respectively, than those of the QPP model.
Meanwhile, the precipitation downscaled using the QPP technique also had lower MAPEs and RMSEs than the
PERSIANN-CCS, PERSIANN-CDR, GSMaP-RNL, and GSMaP-RNLG products. Downscaled precipitation estimates
from the QPP model exhibited patterns with elevation that were more detailed and more reliable than from the
commonly used downscaling methods and another four satellite products. In addition, the QPP model is in-
sensitive to errors in the NDVI or elevation. These findings suggest the proposed approach could be implemented
successfully to downscale both monthly and total precipitation of the Tropical Rainfall Measuring Mission
(TRMM) 3B43 product throughout the growing season in the TRHR.

1. Introduction

Precipitation is an essential component of the global water cycle
that has an important role in hydrological, meteorological, and ecolo-
gical research (Langella et al., 2010). However, the lack of sufficient
numbers of rain gauges makes it a challenge to determine accurate
high-resolution spatial distributions of precipitation in mountainous
areas (Henn et al., 2018). Satellite precipitation datasets offer a

promising solution for this problem (Darand et al., 2017; Pombo and de
Oliveira, 2015; Yang et al., 2017) and several regional- and global-scale
satellite precipitation datasets have been developed. These include the
Global Precipitation Climatology Project (Huffman et al., 1997, 2009,
2001), Climate Prediction Center Merged Analysis of Prediction (Xie
and Arkin, 1997; Xie et al., 2003), Precipitation Estimation from Re-
motely Sensed Information using Artificial Neural Networks (PERSI-
ANN) (Hsu et al., 1999; Hsu et al., 1997; Sorooshian et al., 2000),
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Tropical Rainfall Measuring Mission (TRMM) (Huffman et al., 2007;
Kummerow et al., 1998), and Naval Research Laboratory-Blend satellite
precipitation estimates (Turk et al., 2010).

The spatial resolutions of the above datasets are all equal to or
coarser than 0.25°× 0.25°. Therefore, their use in hydrological or
meteorological applications at local basin scales is inappropriate be-
cause these spatial resolutions are too coarse to reflect meso- and mi-
croscale variabilities in the precipitation distribution (Duan and
Bastiaanssen, 2013; Immerzeel et al., 2009; Xu et al., 2015). One so-
lution is to adopt full utilization of infrared data with high spatial re-
solution for integration with other satellite rainfall data, e.g., passive
microwave and active microwave data. The PERSIANN-Cloud Classifi-
cation System (PERSIANN-CCS) realizes this idea by adopting high
spatial resolution infrared data (0.04°× 0.04°) to extract cloud struc-
ture parameters. These parameters are then input into an artificial
neural network to build a relationship between temperature brightness
and rainfall rate (Hong et al., 2004). The Climate Prediction Center
morphing method uses high spatial resolution infrared data
(0.07°× 0.07°) to detect both the direction of movement and the speed
of cloud systems. The passive-microwave-derived rainfall is then pro-
pagated to adjacent times by adopting the same direction and speed as
the cloud movements (Joyce et al., 2004). The Global Satellite Mapping
of Precipitation (GSMaP) uses similar algorithms to obtain a product
with spatial resolution of 0.1°× 0.1° (Kubota et al., 2007; Ushio et al.,
2009). Of those listed above, the PERSIANN-CCS dataset has the highest
spatial resolution of 0.04°× 0.04° (Hong et al., 2004). However, even
this is still coarse for regional hydrological and meteorological appli-
cations.

Another solution is to develop spatial downscaling algorithms to
downscale existing satellite precipitation estimates based on land sur-
face characteristics using remote sensing data with higher resolution
(Immerzeel et al., 2009). Many attempts have been made to establish an
appropriate downscaling model for precipitation products. An ex-
ponential regression (ER) model was proposed to improve the resolu-
tion of annual TRMM precipitation data from 0.25° to 1 km. This
method was based on the response relationship between the normalized
difference vegetation index (NDVI) and precipitation (Duan and
Bastiaanssen, 2013; Immerzeel et al., 2009). Considering the relation-
ship between precipitation and multiple land surface characteristics, a
multiple linear regression (MLR) model was introduced to downscale
TRMM precipitation data to 1-km resolution (Fang et al., 2013; Jia
et al., 2011; Zheng and Zhu, 2014). Both the ER and the MLR models
are global regression techniques. They are suitable in specific geo-
graphic regions that have consistent spatial relationships between
precipitation and land surface characteristics. However, the relation-
ships between precipitation and various land surface characteristics are
spatially variable and scale dependent (Foody, 2003). Therefore, the
geographically weighted regression (GWR) model was introduced to
downscale TRMM data (Chen et al., 2015; Chen et al., 2014; Xu et al.,
2015). Recently, researchers have tried to construct MLR methods for
several subregions with different land surface characteristics as ex-
planatory variables (Ma et al., 2017; Ma et al., 2017; Zhu et al., 2018).

Generally, precipitation is affected by both macro-geographical
factors and local elevation (Fu, 1983, 1984; Lin, 1995). The main
problem with commonly used downscaling models is that the down-
scaled precipitation data cannot reflect precisely the vertical pre-
cipitation distribution with local elevation at the hill slope scale in
mountainous regions. These models introduce statistical regression
methods to extend directly the relationships between precipitation and
land surface characteristics controlled by macro-geographical factors at
the regional scale to the hill slope scale. If the observed relationship
between precipitation and elevation at the regional scale is inconsistent
with that detected at the hill slope scale, the downscaled precipitation
will be misestimated. In the Three-River Headwaters Region (TRHR),
precipitation generally decreases from southeast to northwest (Shi
et al., 2016). Meanwhile, the regional elevation increases from

southeast to northwest (Qin, 2014). Thus, based on these models,
downscaled precipitation estimates will decrease as the elevation in-
creases. Accordingly, the vertical distribution of the downscaled pre-
cipitation at the hill slope scale will reflect the trend of decreasing
precipitation with increasing elevation. However, a number of studies
have confirmed that precipitation at the hill slope scale can increase
with increasing elevation and decrease when a specific elevation
threshold is exceeded (Barry, 2008; Lin, 1995). The effects of macro-
geographical factors at the regional scale and local elevation at the hill
slope scale illustrate the different relationships between precipitation
and elevation. Therefore, in contrast to the typical trends of precipita-
tion at the hill slope scale, the commonly used models could indicate
that precipitation in valleys might be greater than over neighboring
slopes.

A second problem is that the NDVI, which is commonly employed in
downscaling models, does not accurately encompass precipitation. Jia
et al. (2011) utilized the local Moran's index (Anselin, 1995) to identify
NDVI outliers that were not determined from precipitation. Xu et al.
(2015) removed pixels with NDVI values that were below zero to ex-
clude non-vegetation regions. They then used a noise reduction ap-
proach in a spatial neighborhood to identify NDVI outliers and to
eliminate areas controlled mainly by non-precipitation factors. These
methods can determine outliers caused by noise; however, areas con-
trolled by non-precipitation factors cannot be differentiated because
they are not distributed randomly. Plants located in valley plains or on
concave-sloping landforms benefit considerably from groundwater and
runoff. Therefore, NDVI values in such places are higher than on ad-
jacent slopes. Consequently, these high NDVI values could lead to
overestimation of downscaled precipitation in these areas.

To obtain rainfall products with enhanced spatial resolution and
increased accuracy of spatial distribution, this study developed a
quadratic parabolic profile (QPP) method that considers the effects of
both macro-geographical factors and local elevation. This algorithm
was implemented in the TRHR to downscale both monthly and total
precipitation of the TRMM 3B43 product during the growing seasons
(May–September) of 2009–2013. The performance of the QPP model
was compared with the performances of three commonly used methods
(i.e., the ER, MLR, and GWR models) and another four satellite-derived
high spatial resolution precipitation products.

2. Study area

The TRHR is the source area of the Yangtze, Yellow, and Lantsang
rivers. The region is located in southern Qinghai Province (China) on
the central Tibetan Plateau (31°39′–36°16′N, 89°24′–102°23′E). The
TRHR encompasses an area of approximately 350,000 km2 (Fig. 1) and
the area has a plateau continental climate. From southeast to north-
west, the annual average temperature decreases from 3.8 to −5.6 °C,
the annual average precipitation decreases from 772.8 to 262.2 mm,
and the climatic zone changes from humid subtropical to semiarid (Qin,
2014). In addition, there are many large mountains covered with gla-
ciers and many lakes situated in the lower plains (Guo et al., 2014; Wan
et al., 2016). The TRHR is covered mainly by meadow (57.5%) and
steppe (21.9%), although other vegetation types include alpine vege-
tation (10.0%; e.g., sparse vegetation and cushion vegetation), bush
(5.7%), and forest (1.1%) (Fig. 1(c)).

3. Data and methodology

3.1. Datasets and processing

3.1.1. Satellite precipitation datasets
Five types of satellite precipitation product for the study area were

obtained during the growing seasons of 2009–2013. The monthly pre-
cipitation estimates of TRMM 3B43 Version 7 (0.25°× 0.25°) were
downloaded from https://trmm.gsfc.nasa.gov/. The monthly rainfall of
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