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A B S T R A C T

Productive upwelling zones such as the southern Benguela can exhibit phytoplankton biomass variability over
several orders of magnitude, from near oligotrophic offshore waters to hypertrophic inshore blooms of> 100
mgm −3. This introduces complexity for ocean colour applications such as Harmful Algal Bloom (HAB) mon-
itoring. As low and high biomass algorithmic approaches for ocean colour differ, no single algorithm can op-
timally retrieve accurate Chl a over such a wide range of biomass. We propose a novel technique to apply and
blend two different Chl a algorithms — an empirical blue-green algorithm for low to moderate biomass and a
red-NIR band-ratio algorithm for moderate to high biomass. The blending method is based on the 708 and 665
nm reflectance wavelength ratio, where the blue-green algorithm is applied when the ρw(708)/ρw(665) ratio
is< 0.75, the red-NIR algorithm is applied> 1.15, whilst the two are blended using a weighted approach in
between these values. When applied to in situ and satellite match-up data this method provides a median ab-
solute relative difference (MARD) of 37.9 and 45.7%, respectively, and a RMSD of 0.27 and 0.35 respectively,
over Chl a concentrations spanning three orders of magnitude. Application is demonstrated for both MERIS and
OLCI sensors, providing a smooth transition between different biomass levels and algorithm Chl a returns.

1. Introduction

Deriving quantitative information of the biogeochemical con-
stituents in the water column from satellite ocean colour data requires
regionally or water type appropriate algorithms. As a component of all
photosynthetic marine algae, Chlorophyll a concentration ([Chl a]) is
often used as a proxy for phytoplankton biomass (O’Reilly et al., 1998).

Empirical algorithms that utilize relationships between reflectances
in the blue and green spectral regions (e.g. O’Reilly et al., 1998;
O’Reilly et al., 2000; Morel and Antoine, 2011) are often used to derive
[Chl a] in open ocean or “ Case 1” waters (Morel and Prieur, 1977;
Gordon and Morel, 1983), where water constituents tend to covary with
phytoplankton and its related degradation products. However, the as-
sumptions that these algorithms are based upon can break down in
productive or turbid waters (Dierssen, 2010). Algorithms utilizing the
red-NIR part of the electromagnetic spectrum have often been preferred
for ocean colour remote sensing of productive inland and coastal wa-
ters. This spectral region has several reflectance features that can be
related to [Chl a], such as the height of the solar-induced Chl a fluor-
escence peak (e.g. Gower and King, 2007; Ryan et al., 2009), the re-
flectance peak around 700 nm which is often related to [Chl a] through

relationships with band ratio (Gitelson et al., 2011; Gurlin et al., 2011;
Yacobi et al., 2011) and spectral band difference algorithms (Gower
et al., 2005; Matthews et al., 2012).

Although both blue-green and red-NIR band ratio algorithms are
mostly robust in their ability to provide coherent patterns of the sy-
noptic phytoplankton biomass variability at their respective optimal
[Chl a] ranges, the natural variation in IOPs often necessitate regional
tuning to ensure lower uncertainty in [Chl a] retrievals (e.g.McKee
et al., 2007; Volpe et al., 2007). To date there is no single algorithm that
can provide accurate quantitative information across all water types.

To overcome this hurdle, specific thresholds or flags have been used
to switch between different algorithms (e.g. Matsushita et al., 2015;
Smith et al., 2013); however, these techniques run the risk of causing
discontinuities that may not be apparent just by looking at the [Chl a]
image, but which may show up with more detailed analysis (e.g.
Hooker et al., 1995). More holistic methods have included fuzzy clas-
sification of reflectance spectra into predefined optical water types for
application and blending of water type-appropriate algorithms (Moore
et al., 2001, 2014); this method has now also been included as part of
the ocean colour products produced by the ESA Climate Change In-
itiative to apply and blend class appropriate algorithms across merged
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satellite datasets (Jackson et al., 2017). The Coast Colour project pro-
poses a merged [Chl a] product, which blends the retrievals of a blue-
green empirical algorithm and a neural network algorithm, based on
the satellite retrieved concentration of total suspended matter
(Brockmann, 2014). A similar method has been employed in the Yellow
and East China Seas, where the height of the normalized water-leaving
radiance at 555 nm was used to switch and blend between two re-
gionally-modified algorithms for Case 1 and turbid waters, respectively
(Siswanto et al., 2011). The novelty detection technique of D’Alimonte
et al. (2003) uses the triplet of the logarithm of the Rrs at 490, 555, and
665 nm with a probability density function to blend the returns from
two different neural network algorithms when satellite pixels are con-
sidered non-novel. Weighted algorithm switching and blending can also
optimize retrievals in low biomass Case 1 environments; the NASA [Chl
a] product, chlor_a, uses the colour index (CI) (Hu et al., 2012) and the
standard OC3 for MODIS or OC4 for SeaWiFS (O’Reilly et al., 2000),
whilst a transition between the two products occurs at CI values of 0.15
and 0.2 (Feldman and McClain, 2017). Kahru and Mitchell (2010) use
both the maximum band ratio and the mean geographical position re-
lative to the Subtropical Front to weight and blend their Southern
Ocean specific algorithm with OC4, whilst Carder et al. (1999) blend
semianalytical and empirical algorithms based on the phytoplankton
absorption coefficient at 675 nm (aϕ(675)) value returned by the
semianalytical algorithm. Weighted algorithm blending thus offers the
ability to smoothly transition between water-type appropriate algo-
rithms to ensure optimal retrievals and minimize spatial discontinuities.

The region of interest in the current study is the southern Benguela,
a highly productive and dynamic eastern-boundary upwelling system.
The optical conditions can be described as phytoplankton-dominated
extreme Case 1 (Matthews et al., 2012), with inorganic particulates and
coloured dissolved organics contributing very little to the bulk inherent
optical properties. Due to the wind-driven and pulsed nature of the
system, [Chl a] may range from approximately< 1 to> 30mgm −3, in
newly and aged upwelled water respectively (Barlow, 1982), over a
matter of days; [Chl a]> 100mgm −3 is often reported in bloom
conditions (Pitcher and Nelson, 2006). Harmful algal blooms (HABs)
occur frequently from January to May in the latter half of the upwelling
season (Pitcher and Calder, 2000), which have the potential to nega-
tively impact commercial and recreational activities in the region
(Pitcher and Calder, 2000; Probyn et al., 2000). Although the [Chl a]
product cannot directly describe the type of species or toxicity of a
bloom, it can be used as an indicator for high biomass blooms that
could potentially lead to hypoxic events (Pitcher and Weeks, 2006).

Whilst standard empirical algorithms may be sufficient to monitor
the average coastal and offshore conditions of [Chl a] < 25mgm−3,
algorithms are also required to accurately assess the very high biomass
ranges where potential harmful impacts from toxic diatom and toxic or
hypoxia-causing dinoflagellate blooms may materialize. The water-
leaving reflectance signal attributed to increasing phytoplankton bio-
mass becomes dominated by features in the red part of the spectrum at
around 15mgm−3 (Robertson Lain et al., 2014); thus, from a remote
sensing perspective, operational monitoring of this highly variable
system would benefit from a dynamic approach that utilizes appro-
priate algorithms corresponding to the dominant spectral features and
in situ ranges of phytoplankton biomass, whilst providing optimal
blended returns. We propose that it is possible to base an algorithm
switch on the ratio of the reflectance peak near 700 nm, attributed to a
combination of strong phytoplankton and water absorption and ele-
vated phytoplankton backscattering, and the reflectance trough near
675 nm, caused by a maximum in Chl-a absorption. This ratio is
strongly related to [Chl a] and is often employed in red-NIR algorithms
(Gurlin et al., 2011).

In order to optimize this approach for satellite application, the 708
and 665 nm bands were utilized respectively. With the availability of
good spectral coverage in the red-NIR the Level 2 radiometric data from
both the MEdium Resolution Imaging Spectrometer (MERIS) and the

Ocean and Land Colour Imager (OLCI) provide the ideal sensors for
application of this approach to derive quantitative [Chl a]. Although
the MERIS time-series ended in 2012, it provides ten years of ocean
colour data for time-series analysis and algorithm development and
testing. OLCI was built on MERIS heritage with similar radiometric
setup and quality to ensure algorithm and data time-series continuity
between these sensors.

The focus of this paper is to optimally resolve [Chl a] over a wide
range of biomass in waters where phytoplankton are the dominant
optical constituent in the water column (i.e. where the contributions
from absorption and backscattering of terrigenous coloured dissolved
organic particles and inorganic particles to the water-leaving signal are
relatively small). The goal was not to derive new algorithms, but to find
the best performing existing algorithms for low to moderate
(< 10mgm−3), and moderate to high (> 10mgm−3) biomass waters,
and to devise a method to assign, and where necessary blend, algorithm
returns.

2. Materials and methods

2.1. In situ data collection

All the in situ data were collected in the southern Benguela along the
west coast of South Africa between 2002 and 2017. This region has
been the focus of many ocean colour remote sensing studies since 2002
due to the high productivity of the upwelling system and resulting
harmful algal blooms. Field campaigns have most often focussed on the
upwelling or highly productive seasons (February to April) in order to
capture in situ and satellite validation data for the phytoplankton
blooms which frequently occur during this time. The available data
were collected during collaborative research efforts between the
Department of Agriculture, Forestry and Fisheries (DAFF), the Council
for Scientific and Industrial Research (CSIR) and the University of Cape
Town (UCT) and have included data collection in the St Helena Bay
region near Lambert's Bay (N=142), Elands Bay (N=25), and the
Berg River mouth (N=5), as well as in Saldanha Bay (N=6). The
methodological details for these field studies are all similar, and are
described below. Additional data collected in the Benguela region in-
cludes the Benguela Calibration (BENCAL) cruise (N=20) during
October 2002; details of the data collection methodology can be found
in the cruise report (Barlow et al., 2003). A complete in situ dataset
which focused on the Rrs and [Chl a] data was compiled from the
aforementioned studies.

Coincident radiometric measurements and water sample collection
were performed within maximum of 60min(although usually within
30min) of satellite overpass times, usually between 09:30 and 10:30 local
time. In-water radiometric measurements were made with a hyperspec-
tral Tethered Satlantic Radiometric Buoy (TSRB). The TSRB measures
upwelling radiance (Lu(z) at z=−0.66m μWcm−2 nm−1 sr−1) and
above surface downwelling irradiance (Ed(0+), μWcm−2 nm−1) and has
two 256 channel spectrographs that cover a spectral range of 400 to
800 nm. During acquisition the instrument was floated far enough from
the vessel to avoid shadowing or interference. Measurements were typi-
cally recorded for about 2 to 5min. Raw data were processed with Prosoft
6.3d (Satlantic: Halifax, Canada); the median values of the deployment
were selected and resampled to a spectral resolution of 5 nm. The mea-
sured radiometric variables were converted to remote sensing reflectance
(Rrs) using the equivalent algal population (EAP) inversion algorithm with
Ecolight-S (Mobley, 2011) (as described in Evers-King et al., 2014) to
derive the upwelling radiance attenuation coefficient (KLu). Various
sources of uncertainty can affect the derivation of in situ Rrs, including the
cumulative uncertainty in upwelling radiance (Antoine et al., 2006), ca-
libration uncertainty for irradiance (Zibordi and Voss, 2010), the self-
shading percentage error of the TSRB (Leathers et al., 2001), and the tilt
and roll of the instrument (Zibordi et al., 2012), to name a few. The cu-
mulative uncertainty budget for these types of radiometric buoys has been
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