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A B S T R A C T

Urban heat island (UHI) has become an urban eco-environmental problem globally. Land surface temperature
(LST) is widely used to quantify UHI. This study used Shenzhen, a southern coastal city in China, as an example
to explore the relationship between spatial variation of LST in different seasons and the influencing factors in
five dimensions, integrating the methods of ordinary least-squares regression, stepwise regression, all-subsets
regression, and hierarchical partitioning analysis. The results showed that the most important factor affecting
spatial heterogeneity of LST in summer was the normalized difference build-up index (53.62%, for contributing
rate), whereas in the transition season the most important factor was the normalized difference vegetation index
(NDVI) (47.84%). In winter the construction land percentage and NDVI (26.84% and 25.56%, respectively) were
the most influential. Artificial surface and green space had a dominant effect on LST spatial differentiation.
Landscape configuration and diversity were not the dominant influencing factors in summer or in the transition
season. Furthermore, the independent contribution rate of the Shannon diversity index (SHDI) reached 8.79% in
the transition season, while in winter, the independent contribution rates of SHDI and the landscape shape index
were 8.52% and 3.45%, respectively. The influence of landscape diversity and configuration factors tended to
increase as LST reduced, while the contribution rate of the important factors such as artificial surface and green
space decreased significantly. These relationships indicate that the influence of landscape configuration and
diversity factors on LST is relatively weak, and can be easily concealed by the influence of landscape compo-
nents, especially when the spatial variation of LST is not strong. These findings can help to develop UHI
adaptation strategies based on local conditions.

1. Introduction

More than 54% of the world's population lives in urban areas, and
according to the World Health Organization's World Urbanization
Prospectus this proportion will increase (Ayansina, 2016). Over the past
few decades, China has experienced rapid urbanization process, with
China's urban area expanding by>20% since 1985 (Liu and Tian,
2010). Along with the dramatic urbanization, natural vegetation and
farmland have been rapidly replaced by artificial surface (Li et al.,
2015; Rhee et al., 2014), resulting in temperatures in urban areas are
higher than that in suburbs, which is commonly known as urban heat
island (UHI) effect (Oke, 1982). UHI not only deteriorates a city's water
quality and air quality (Grimm et al., 2008), thus affecting the livability
of the urban areas (Zhang et al., 2013), but also accelerates urban en-
ergy consumption (Konopacki and Akbari, 2002) and increases human
risk of violence and mortality (Jenerette et al., 2016; Patz et al., 2005).
As a result, a better understanding and monitoring of the UHI effect is

critically important to improve the quality of life and the environment
of urban residential areas, and to develop strategies related to sus-
tainable development (Zhou et al., 2017).

The basic premise of UHI study is to quantitatively measure the heat
island, and widely used methods can be divided into two categories.
The first method uses atmospheric temperature data acquired from
traditional ground meteorological sites (Eludoyin et al., 2013; Hamdi
and Schayes, 2008), and compares the difference between urban and
suburban meteorological sites to identify the UHI. However, low den-
sity of monitoring sites and the uncertainty in weather limit the pre-
cision of the traditional method. The second method uses remote sen-
sing data to retrieve the land surface temperature (LST) (Imhoff et al.,
2010; Li et al., 2013; Peng et al., 2012). Although the data from ground
meteorological sites have a higher temporal resolution than remotely
sensed data, they are difficult to be applied to large-scale research. Easy
access, better spatial resolution and greater spatial coverage prompt
more researchers to use remote sensing data to measure UHI (Ayansina,
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2016; Clinton and Gong, 2013; Lu et al., 2014; Weng, 2009). A variety
of remotely sensed data have been used to assess LSTs and UHIs, such as
the Landsat Thematic Map-per/Enhanced Thematic Mapper+ (TM/
ETM+), Moderate-resolution Imaging Spectroradiometer (MODIS),
Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) and Advanced Very-High-Resolution Radiometer (AVHRR)
satellite data (Cheval and Dumitrescu, 2009; Yuan and Bauer, 2007).

Although remotely sensed data can help researchers depict the
spatial pattern of LST, it is very difficult to put forward strategies to
mitigate UHI effect only with the results of LST spatial pattern. Spatial
heterogeneity of urban LST results from the correlation between LST
and influencing factors and their interactions, and to clarify how LST
was affected by these factors, the quantitative relationship between LST
and each factor has been studied (Li et al., 2016). Generally speaking,
widely focused factors can be roughly divided into the following three
types: (1) Surface biophysical parameters. Because of the richness of
land use and land cover information, surface biophysical parameters
have been widely used in LST correlation analysis. The normalized
difference vegetation index (NDVI) (Liu et al., 2016), normalized dif-
ference built-up index (NDBI) (Chen et al., 2006; Liu and Zhang, 2011),
and normalized difference water index (NDWI) (Jiang et al., 2015) have
shown good linear relationship with LST. (2) Landscape component,
diversity and configuration factors. Urbanization makes dramatic
changes in the structural components and diversity, and spatial con-
figuration of urban landscapes. Landscape components characterize the
different compositions and the richness of landscape types, and are
usually quantified as proportions of land cover types (Du et al., 2016;
Zhou et al., 2017). Different types of landscape components have dif-
ferent reflectivity and hydrothermal properties, and hence affect LST to
varying degrees. Landscape diversity is an integrated characterization
of combination relationship among all the landscape components,
quantified through the number of landscape components and the
evenness of their area proportions. The arrangement and spatial char-
acteristics of landscape components are measured by landscape con-
figuration, and different arrangements of landscape patches can affect
the energy exchange patterns and the efficiency among the patches,
thus affecting the land surface heat flow (Sun and Chen, 2012; Turner,
2005). Therefore, landscape metrics which characterize landscape
configuration are usually used in LST study focusing on spatial varia-
tion (Zhou et al., 2011; Connors et al., 2013). (3) Socio-economic fac-
tors. The changes in natural landscapes are mostly the result of human
activities (Lu et al., 2013), and population density has been proved to
have a positive effect on the formation of UHI (Kotharkar and Surawar,
2016; Weng et al., 2008; Huang and Cadenasso, 2016). However, other
socio-economic factors, such as road density (representing car owner-
ship), gross domestic product (GDP, representing the strength of re-
shaping nature) and nighttime light data from the US Defense Me-
teorological Satellite Program (NTL, representing the intensity of
human activities), are rarely used in LST study. A bunch of impact
factors affect land surface temperature. However, considerable studies
analyze only one or several of these factors. Previous studies have failed
to integrate the overall influencing effects of green landscape, water-
body, high albedo, landscape configuration and socio-economic factors
on LST. Consequently, it is difficult to determine the dominant influ-
encing factor of LST, and existing studies contain results that are laden
with uncertainty.

It is known that sunlight condition, hydrothermal condition, and
spatial characteristics of vegetation coverage are variable across the
seasons, which lead to uncertainty of the study on both LST spatial
variation and its driving factors. Results are, in some cases, contra-
dictory. For example, Neave et al. (2016) found five major cities in
Australia had a strong UHI in winter. Schatz and Kucharik (2014)
pointed out that UHI intensity in the Madison region of Wisconsin, USA
was higher in the warm season and lower in the cold season. This in-
consistency among different seasons also appeared in the study of LST
driving forces. In Nigeria, Ayansina (2016) showed that NDVI explained

the spatial differentiation of LST in the dry season much better than that
in the wet season. Chen et al. (2013) indicated that NDVI had the best
correlation with LST in summer, and Mukherjee et al. (2015) showed
that compared with other seasons, NDVI had a better cooling effect in
the spring. However, Sun and Menas (2007) found in North American
NDVI could have a positive relationship with LST in winter. Zhang et al.
(2009) showed that NDBI had a positive correlation with LST spatial
variability during spring and summer, with significant warming effect.
However, according to the study of Liu and Zhang (2011) in Hong
Kong, the positive correlation and warming effect are more obvious in
winter. This inconsistency had prevented the application of the results
to urban planning and management.

As we all know that urban LST is affected by a number of driving
factors, what is less known, however, which are the dominant factors?
Many statistical methods are used to identify the dominant influencing
factors of urban LST. Most common among these methods are the
Pearson correlation analysis and ordinary least-squares regression
analysis (OLS). To measure spatial correlations, some studies used
geographically weighted regression (Zhou and Wang, 2011), and for-
ward, backward and forward-backward stepwise regressions were often
applied in multivariate analysis to find an optimal model (Asgarian
et al., 2015). Factor analysis, such as principal component analysis, was
also often used when a number of influencing factors were considered
simultaneously (Chen et al., 2014; Weng et al., 2008). Currently used
statistical methods are effective, however, two analytical problems re-
main. Firstly, many studies used only a single influencing factor to es-
tablish the regression model with LST, and compared the individual
effects of different factors on LST based on the coefficient of regression
(R2) for each single-factor regression equation. However, LST spatial
pattern is usually not affected by a single influencing factor, but rather
is the result of the combined effects of multiple influencing factors.
Thus, the strength of explanation (R2) of a single-factor regression
model does not accurately represent the independent contribution of
the corresponding factor. The interpretation of LST should consider
more than one influencing factor, and establish a multiple statistical
regression model to quantify the independent effect of each factor on
LST variability. Secondly, most of the studies used stepwise regression
to determine the truly influencing factors and establish appropriate
models. Although stepwise regression can identify a good model to
explain LST variation, after the model is established, identifying the
relative importance of all the factors is difficult. In summary, few stu-
dies are focused on identifying the dominant factor of LST and the
importance ranking of all the influencing factors. This research gap
prevents us from putting forward better strategies to mitigate the UHI.

Here, we address these problems by conducting a seasonal com-
parison study in Shenzhen City, Guangdong Province, China. This study
aimed to explore the seasonal differentiation of urban LST influencing
factors using the methods of all-subsets regression and hierarchical
partitioning analysis. In particular, the main purposes of the study
were: (1) to compare the spatial pattern of LST in different seasons; (2)
to use OLS and stepwise regression to clarify the correlation between
individual influencing factors and LST; and (3) to apply all-subset re-
gression to select the best fitting model with multilevel influencing
factors, to analyze the relative importance of the explanatory variables
of the optimal model for different seasons using hierarchical parti-
tioning analysis, and thus to identify the dominant influencing factor in
different seasons.

2. Methodology

2.1. Study area and data source

Shenzhen City is located in the southern coastal area of Guangdong
Province (113° 46′–114° 37′ E, 22° 27′–22° 52′ N), south of the cities of
Huizhou and Dongguan, and north of the Hong Kong Special
Administrative Region (Fig. 1). The topography in Shenzhen City has a
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