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A B S T R A C T

The temporal dynamics of optimum stomatal conductance (gsmax), as well differences between C3 and C4 crops,
have rarely been considered in previous remote sensing (RS)-based Jarvis-type canopy conductance (Gc) models.
To address this issue, a RS-based two-leaf Jarvis-type Gc model, RST-Gc, was optimized and validated for C3 and
C4 crops using 19 crop flux sites across Europe, North America, and China. RST-Gc included restrictive functions
for air temperature, vapor pressure deficit, and soil water deficit, and it used satellite-retrieved NDVI to for-
mulate the temporal variation of gsmax defined at a photosynthetic photon flux density (PPFD) of 2000 μmol m−2

s−1 (gsm, 2000). Results showed that the parameters of RST-Gc differed between C3 and C4 crops. RST-Gc suc-
cessfully simulated variations in Penman–Monteith (PM)-derived daytime Gc with R2=0.57 for both C3 and C4

crops. RST-Gc was incorporated into a revised evapotranspiration (ET) model and a new gross primary pro-
ductivity (GPP) model. The two models were validated at 19 crop flux sites. Daily mean inputs were generally
incorporated into a PM approach to model daily transpiration. This is inappropriate because available energy
and stomatal conductance vary significantly on a diurnal basis, with both non-linearly regulating transpiration
rate. The PM approach with daily mean inputs produced unreasonable transpiration rate estimates. Efforts were
made in the revised ET model (denoted as RS-WBPM2), which was modified from the water balance based RS-
PM (RS-WBPM) model of Bai et al. (2017), to address this issue by calculating transpiration using daytime
inputs. The photosynthesis-based stomatal conductance model, developed by Ball et al. (1987a) and improved by
Leuning (1995) (BBL model), was inverted to calculate GPP using canopy conductance; the inverted model was
denoted as IBBL. Cross validation showed good agreement between flux tower measurements and modeled ET
(R2=0.79, RMSE (root mean standard error)= 20.66W m−2 for daily ET and R2= 0.87, RMSE=15.32W
m−2 for 16-day ET) and GPP (R2= 0.83, RMSE=2.49 gC m−2 d−1 for daily GPP and R2= 0.86,
RMSE=1.96 gC m−2 d−1 for 16-day GPP) for the two models. Within-site validations demonstrated the suc-
cessful performance of the two models at 18 sites (albeit with one outlier). Inter-site variations in ET and GPP
were also successfully reproduced by the models. NDVI-derived gsm, 2000 outperformed the fixed gsm, 2000 in both
ET and GPP estimates. The results imply that the RS-WBPM2 and IBBL models are useful tools for modeling
regional and global ET and GPP.

1. Introduction

Canopy conductance (Gc), as up-scaled from stomatal conductance
(gst), plays a significant role in regulating evapotranspiration (ET) and
photosynthesis (Flexas et al., 2006). ET is even directly determined by
Gc in arid/semi-arid regions (Zhang et al., 2007), and Gc is an essential
input in multiple Earth system models (ESMs) for water (e.g., Mu et al.
(2011), Yan et al. (2012), Yebra et al. (2013) and Bai et al. (2017)) and

carbon (e.g., Running and Coughlan (1988), Chen et al. (1999), Ryu
et al. (2011), De Kauwe et al. (2015), Yebra et al. (2015), Jiang and Ryu
(2016) and Zhang et al. (2018)) flux simulations. To understand the
water and carbon cycles of terrestrial ecosystems, the accurate esti-
mation of Gc is highly important.

Remote sensing (RS) provides continuous spatial information for
understanding the heterogeneity of land and is thus of great potential in
modeling the spatial dynamics of Gc over broad regions. On a regional
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or global scale, three types of widely used canopy conductance (Gc)
model, i.e., the empirical model (Cleugh et al., 2007; Yebra et al.,
2013), Ball-Berry–Luening (BBL)-type model (Collatz et al., 1992;
Kowalczyk et al., 2006; Myneni et al., 1992; Wang and Leuning, 1998)
and Jarvis-type model (Leuning et al., 2008; Mu et al., 2007; Mu et al.,
2011; Yan et al., 2012; Zhang et al., 2009), have been implemented
using RS data. The empirical model is characterized by its simple for-
mulation; it uses RS data alone to calculate Gc. The BBL-type model
includes more physiological mechanisms relating to stomata than do
the other two models; it is generally coupled with a RS-based photo-
synthesis module. The Jarvis-type model adopts the framework of the
model of Jarvis (1976) and uses multiple environmental restrictive
factors to scale a RS-derived maximum canopy conductance to the ac-
tual value. The framework of the Jarvis-type model is simpler than that
of the BBL-type. However, this framework has one shortcoming, i.e.,
potential interaction effects of environmental factors on stomata are
excluded. For example, Bunce (1998) found that stomata were in-
sensitive to changes in ambient CO2 concentration under a low vapor
pressure deficit (VPD). However, the Jarvis-type model has been found
useful and is used widely in RS-based land process models (Chen et al.,
1999; Damour et al., 2010; Leuning et al., 2008; Liu et al., 1999; Mu
et al., 2011; Zhang et al., 2010). In addition, Raab et al. (2015) found
that the Jarvis-type model performance was comparable that of with
the BBL-type model; therefore, the Jarvis-type model with its simpler
framework is favorable.

The Jarvis-type Gc model has been widely employed by RS-based
land process models (Chen et al., 1999; Liu et al., 1999; Mu et al., 2011;
Running and Coughlan, 1988); however, the Gc values of crop lands
were only roughly parameterized in these models. A significant re-
maining problem is that differentiation between C4 and C3 crops has
rarely been considered. For instance, both the MODIS gross primary
productivity (GPP) algorithm (MOD17) and ET algorithm (MOD16)
incorporated the Jarvis-type model using the same parameter set for C4

and C3 crops (Mu et al., 2011; Running et al., 1999; White et al., 2000).
By contrast, the Breathing Earth System Simulator (BESS) developed by
Ryu et al. (2011) did consider this issue. The recently released 1-km ET
and GPP products produced using BESS significantly outperformed the
MODIS ET and GPP products on crop lands (Jiang and Ryu, 2016). The
performances of the new products indicate the advantages of differ-
entiating between C3 and C4 crops when parameterizing RS-based land
process models. Similarly, the evaluation of different light use effi-
ciency (LUE) models by Yuan et al. (2015) also suggested that modeling
the GPP of C3 and C4 crops using the same parameter set might induce
large uncertainties. As photosynthesis is closely coupled with stomatal
conductance (Ball et al., 1987b; Leuning, 1995; Wong et al., 1979), Gc

estimates could also be biased if a single parameter set is applied for C3

and C4 crops,
Another problem with the RS-based Jarvis-type model is that max-

imum stomatal conductance (gsmax) is specified by plant functional type
(PFT) and assumed to be temporally invariant. In fact, gsmax tends to
vary throughout the growing season, even for a certain PFT. One ob-
vious piece of evidence for this is the close relationship between gsmax

and leaf nitrogen content (LNC) or the maximum photosynthetic ca-
pacity (Kelliher et al., 1995; Schulze et al., 1994; Wong et al., 1979). A
fixed gsmax could cause uncertainties when estimating Gc. Zhang et al.
(1997) found that the Jarvis-type model with a fixed gsmax value, which
was calibrated from field samples, underestimated canopy conductance
at a high value. However, it is not easy to directly retrieve the LNC or
photosynthetic capacity of leaves from satellite data and then estimate
the temporal dynamic of gsmax. Alternatively, we could refer to chlor-
ophyll (Chl) content when estimating the temporal dynamic of gsmax

since Chl content is strongly correlated with the leaf photosynthetic
capacity parameter, maximum carboxylation rate (Vcmax25) (Croft et al.,
2016), as well as some simple vegetation indices like NDVI (Hashemi
and Chenani, 2011; Wu et al., 2009). Indeed, Matsumoto et al. (2005)
suggested a positive effect of Chl content on stomatal conductance for

Quercus serrate trees. Therefore, NDVI is potentially useful for esti-
mating the temporal dynamic of gsmax. Satellite-retrieved NDVI is
strongly correlated with leaf area index (LAI); in turn, the LAI of crops
greatly depends on the phenological phase, which determines the leaf
Chl content of the crop (Jeganathan et al., 2010). The phenology of land
vegetation can be fairly well indicated by satellite-NDVI (Chang et al.,
2016; Chu et al., 2014b; Lee et al., 2002). This highlights the potential
to parameterize gsmax using the satellite-retrieved vegetation index,
NDVI.

In this study, we aimed to calibrate a RS-based Jarvis-type Gc model
and apply it to the modeling of daily GPP and ET at 19 cropped, eddy
covariance flux sites across Europe, North America, and China. The
main objectives were: (a) optimize the restrictive functions of four
environmental factors, i.e., air temperature, VPD, soil water deficit, and
solar radiation, using eddy covariance observations for C3 and C4 crops;
(b) use satellite-retrieved NDVI to parameterize gsmax; (c) improve the
water balance and Penman–Monteith equation (Monteith, 1965) (PM)-
based ET model, RS-WBPM (Bai et al., 2017) and use it to model daily
ET of crop lands; (d) use an inverted BBL-type model (IBBL) to estimate
crop GPP along with the optimized Gc model; and (e) validate the im-
proved RS-WBPM and IBBL models. Three models were used in this
study, i.e., the canopy conductance model RST-Gc, the revised RS-
WBPM model, and the IBBL model. Details of the three models are
presented in Section 2 and overviews of the three models are given in
Appendix A. Variables and symbols appearing in the three models are
explained in Appendix F.

2. Methodology

2.1. Calculating Gc for model optimization and validation

Both the inverted PM equation and the BBL model (Leuning, 1995),
along with eddy covariance flux data, are used to calculate Gc. Gc cal-
culated using the inverted PM equation (PM-Gc) is used for validating
modeled Gc, whereas that calculated using the BBL model is used for
optimizing the Jarvis-type Gc model. The inverted PM equation uses
latent heat flux and net radiation to calculate Gc, whereas the BBL
model uses GPP. Therefore, PM-derived Gc will inevitably be affected
by soil evaporation. Thus, if we remove just the data with low LAI le-
vels, the sample size would be considerably reduced. By contrast, using
the BBL model to calculate Gc can avoid the effect of soil evaporation
and increase the available sample size by a significant margin.

2.1.1. PM-derived daytime Gc (PM-Gc) for model validation
The inverted PM equation used to calculate Gc is presented as fol-

lows (Yebra et al., 2013):
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We only applied Eq. (1) on rain-free days, with the result referred as
Gc (Yebra et al., 2013).

Aerodynamic conductance for canopy vapor tranfer, Ga
c, is calcu-

lated according to Thom (1975):
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For calculating Ga
c, parameters d, zom and zoh were estimated as

0.66h, 0.123h and 0.1zom, respectively (Yan et al., 2012), where h is the
canopy height. For a soil surface substrate, d was set to 0, and zom was
set to 0.004m, the median value of the zom range of various soil sur-
faces (Monteith and Unsworth, 2013). For a paddy land substrate, zom
was set to 0.002m, the minimum value for a water surface (Monteith
and Unsworth, 2013), because the water surface roughness under a
crop canopy is generally less disturbed by wind than that of an open
water surface.
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