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A B S T R A C T

Given the common trade-off between the spatial and temporal resolutions of current satellite sensors, spatial-
temporal data fusion methods could be applied to produce fused remotely sensed data with synthetic fine spatial
resolution (FR) and high repeat frequency. Such fused data are required to provide a comprehensive under-
standing of Earth's surface land cover dynamics. In this research, a novel Spatial-Temporal Fraction Map Fusion
(STFMF) model is proposed to produce a series of fine-spatial-temporal-resolution land cover fraction maps by
fusing coarse-spatial-fine-temporal and fine-spatial-coarse-temporal fraction maps, which may be generated
from multi-scale remotely sensed images. The STFMF has two main stages. First, FR fraction change maps are
generated using kernel ridge regression. Second, a FR fraction map for the date of prediction is predicted using a
temporal-weighted fusion model. In comparison to two established spatial-temporal fusion methods of spatial-
temporal super-resolution land cover mapping model and spatial-temporal image reflectance fusion model,
STFMF holds the following characteristics and advantages: (1) it takes account of the mixed pixel problem in FR
remotely sensed images; (2) it directly uses the fraction maps as input, which could be generated from a range of
satellite images or other suitable data sources; (3) it focuses on the estimation of fraction changes happened
through time and can predict the land cover change more accurately. Experiments using synthetic multi-scale
fraction maps simulated from Google Earth images, as well as synthetic and real MODIS-Landsat images were
undertaken to test the performance of the proposed STFMF approach against two benchmark spatial-temporal
reflectance fusion methods: the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM)
and the Flexible Spatiotemporal Data Fusion (FSDAF) model. In both visual and quantitative evaluations, STFMF
was able to generate more accurate FR fraction maps and provide more spatial detail than ESTARFM and FSDAF,
particularly in areas with substantial land cover changes. STFMF has great potential to produce accurate time-
series fraction maps with fine-spatial-temporal-resolution that can support studies of land cover dynamics at the
sub-pixel scale.

1. Introduction

With the capabilities of broad spatial coverage and temporally re-
peated imaging from Earth observation sensors, remote sensing has
considerable potential to provide time-series satellite images for
studying land surface dynamics (Townshend et al., 1991; Yang and Lo,
2002). In heterogeneous areas, land surface dynamics, such as urban
expansion, flooding and deforestation, often occur at a fine spatial scale
and within a short period. It is, therefore, necessary to collect fine-

spatial-temporal-resolution remote sensing images to monitor fine scale
land cover changes in a timely manner. Due to the common trade-off
between the spatial resolution and the temporal repeat frequency of
satellite sensing systems, there is so far no single satellite sensor that
can provide remote sensing images with both fine spatial and temporal
resolutions (Gao et al., 2006; Li et al., 2017; Zhu et al., 2016). Gen-
erally, fine spatial resolution (FR) satellite images are acquired infre-
quently and have a relatively coarse temporal resolution, making it
hard to monitor rapid land cover changes. On the contrary, coarse
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spatial resolution (CR) satellite sensors acquire data with a high repeat
frequency. However, their spatial resolutions are often too coarse to
allow the detection of land cover changes occurring in small areas.
Therefore, to deal with this dilemma, methods for spatial-temporal data
fusion are highly desirable for application to both kinds of remotely
sensed imagery to provide remote sensing data with fine spatial and
temporal resolutions for studying land surface dynamics (Gao et al.,
2006; Gong et al., 2013; Hansen and Loveland, 2012; Li et al., 2015;
Ling et al., 2016; Ling et al., 2011; Zhu and Woodcock, 2014).

Recently, the spatial-temporal super-resolution mapping (STSRM)
method proposed by Ling et al. (2011) has become a promising spatial-
temporal fusion method to extract fine spatial and temporal resolution
land cover change information (Li et al., 2016; Ling et al., 2016; Wang
et al., 2015; Wu et al., 2017; Xu et al., 2017). STSRM aims to predict a
FR land cover map from CR fraction maps, assuming that another FR
land cover map, acquired at previous time for the same area, is avail-
able. STSRM can be considered as an extension of the traditional super-
resolution mapping approach applied to a mono-temporal image, by
incorporating information about the land cover changes through time.
The key of STSRM is the multi-scale land cover change principle that is
using coarse-to-fine resolution change detection between current CR
fraction maps and previous FR land cover map to predict the potential
locations of current land cover labels of FR land cover map (Ling et al.,
2011). The multi-scale land cover change principle in STSRM was fur-
ther analyzed and assessed by using existing land cover maps, and it has
been demonstrated consistently that the principle could be suitable for
most current satellite sensors (Ling et al., 2016). Some popular super-
resolution mapping algorithms applied on mono-temporal remote sen-
sing images were also extended to the spatial-temporal domain, leading
to various STSRM models (He et al., 2016; Li et al., 2015; Li et al., 2017;
Wang et al., 2016; Xu and Huang, 2014; Zhang et al., 2017). Compared
with the traditional super-resolution mapping methods applied to
mono-temporal remote sensing imagery, STSRM can provide details
about the spatial distribution of different land cover classes and their
changes over time. It is a promising means to produce fine spatial and
temporal resolution land cover maps from multi-scale remote sensing
imagery.

It is noteworthy that in all existing STSRM models the FR pixels are
treated as pure units. That is, the fine pixels within the input and the
resultant FR land cover maps are all considered as pure pixels, and each
of them is labeled as representing an area comprised of one and only
one land cover class. This assumption is reasonable in some cases be-
cause the proportion of mixed pixels in an image is typically positively
related to pixel size. However, the limitation of this assumption is also
obvious, as mixing may still exist in FR image pixels, especially if the
land cover mosaic is highly fragmented and heterogeneous.

In practice, the satellite sensor's instantaneous field-of-view often
includes more than one land cover feature irrespective of the scale of
measurement. Indeed, the mixed pixel problem is widely observed in
remote sensing images across different spatial scales (Keshava and
Mustard, 2002). It is well known that CR remote sensing data, such as
those obtained from the Advanced Very High Resolution Radiometer
(AVHRR), MEdium Resolution Imaging Spectrometer (MERIS) and
MODerate resolution Imaging Spectroradiometer (MODIS) images,
contain a large number of mixed pixels. However, the mixed pixel
problem is also evident in medium and high spatial resolution satellite
sensor images, such as Landsat (Lu and Weng, 2004; Powell et al.,
2007), ASTER (Weng et al., 2009), IKONOS (Lu and Weng, 2009) and
Quickbird (Lu et al., 2010), and spectral unmixing techniques may still
be needed to obtain fraction maps to enhance the representation of land
cover. In this situation, the assumption that all FR pixels are pure in
STSRM models may be unreasonable in some real applications.

Another limitation of using the pure pixel assumption in STSRM
model is that land cover change information used by it may be partial
and possibly erroneous. With the assumption, only one land cover class
can be associated with a pixel and hence the only change that can be

characterized is that it represents a complete alteration in land cover
class: a land cover conversion (e.g. a change from forest to grassland).
However, many important land cover changes happed at the sub-pixel
scale (finer than the spatial resolution of pixel) may not involve a
change in class label. For example, a pixel may represent a forested
region which may undergo a substantial change such as a major re-
duction in tree cover and yet still remain classed as a forest. Changes of
the latter type, therefore, do not involve a change in label but a change
in the character of the land cover: a land cover modification. Land cover
modifications cannot be studied using methods that assume pure pixels
but they, and the land cover conversions, can be studied if mixed pixels
are allowed such as via the application of soft classification techniques
(Foody, 2001).

Given the two limitations arising from the pure pixel assumption,
error and uncertainty could be introduced in the resultant fine spatial
and temporal resolution land cover maps produced by STSRM. Since
land cover class fraction values produced by unmixing or soft classifi-
cation analyses can be used to obtain more accurate land cover in-
formation at the sub-pixel scale than discrete land cover labels pro-
duced by hard classification (Foody, 2002; Foody and Doan, 2007),
they may have a potential role to play in increasing the accuracy of the
STSRM approach.

A different approach to the STSRM for fusing fine-spatial-coarse-
temporal and coarse-spatial-fine-temporal remotely sensed images is
the spatial-temporal reflectance fusion model. Unlike the STSRM ap-
proach that aims to predict land cover class labels at a fine resolution,
the spatial-temporal reflectance fusion approach is used to blend re-
flectance values of remotely sensed images. Gao et al. (2006) first
proposed the spatial and temporal adaptive reflectance fusion model
(STARFM) to blend Landsat and MODIS reflectance images and produce
daily 30m synthetic Landsat-like reflectance images. Hilker et al.
(2009) developed a spatial and temporal adaptive fusion model
(STAARCH) to explore spatio-temporal pattern details of forest dis-
turbance based on Landsat and MODIS images. Thereafter, STARFM
was developed as an enhanced spatial-temporal adaptive reflectance
fusion model (ESTARFM) (Zhu et al., 2010) and a flexible spatio-tem-
poral data fusion (FSDAF) model (Zhu et al., 2016). Moreover, other
image spatial temporal fusion models, such as the unmixing based fu-
sion model (Gevaert and Garcia-Haro, 2015; Zhukov et al., 1999;
Zurita-Milla et al., 2008), the sparse representation based fusion model
(Huang and Song, 2012; Song and Huang, 2013) and spatial and tem-
poral reflectance fusion considering the sensor difference (Shen et al.,
2013), have also been proposed. Once the fine spatial and temporal
resolution remote sensing images have been produced by the spatial-
temporal reflectance image fusion method, a spectral unmixing ap-
proach can then be used to produce the corresponding fine spatial and
temporal fraction maps. The effectiveness of this approach, however,
depends greatly on the spatial-temporal reflectance fusion method,
which often suffers from two major limitations when the final objective
is to produce fraction maps. First, most spatial-temporal reflectance
fusion methods do not account for land cover changes that may have
occurred within the period represented by the time-series of remotely
sensed images (Gevaert and Garcia-Haro, 2015; Zhu et al., 2016).
Second, spatial-temporal reflectance fusion methods can generally deal
with image pairs with similar spectral bands. Given that many satellite
sensors produce images with unique spectral bands, the range of ap-
plication of these spatial-temporal reflectance fusion methods is thus
limited. In comparison, STSRM-based approaches are free from the
assumption of sensor-based coherence and can accommodate informa-
tion on class label change, but not the land cover fraction changes.

In this paper, a novel Spatial-Temporal Fraction Map Fusion
(STFMF) model is proposed to generate fraction maps that have a fine
resolution in both the spatial and temporal domains by fusing coarse-
spatial-fine-temporal and fine-spatial-coarse-temporal remotely sensed
images. Critically, the STFMF approach addresses limitations of other
methods and hence forms an important contribution to the realization
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