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ARTICLE INFO ABSTRACT

Keywords: Lidar provides critical information on the three-dimensional structure of forests. However, collecting wall-to-
Lidar wall laser altimetry data at regional and global scales is cost prohibitive. As a result, studies employing lidar for
Landsat large area estimation typically collect data via strip sampling, leaving large swaths of the forest unmeasured by
Forest biomass the instrument. The goal of this research was to develop and examine the performance of a coregionalization
Bayesian hierarchical models . .. . . . .
Gaussian process mod'ehng approach for cor.nbmmg field measgrements, strip §an?plesbof a1rbornle lidar and Landsat-based remote
Cokriging sensing products to predict aboveground biomass (AGB) in interior Alaska's Tanana Valley. The proposed
Block kriging modeling strategy facilitates mapping of AGB density across the domain. Additionally, the coregionalization
Carbon monitoring framework allows for estimation of total AGB for arbitrary areal units within the study area—a key advance to
Linear model for coregionalization support diverse management objectives in interior Alaska. This research focuses on characterization of predic-
Small area estimation tion uncertainty in the form of posterior predictive coverage intervals and standard deviations. Using the fra-
mework detailed here, it is possible to quantify estimation uncertainty for any spatial extent, ranging from point-
level predictions of AGB density to estimates of AGB stocks for the full domain. The lidar-informed cor-
egionalization models consistently outperformed their counterpart lidar-free models in terms of point-level
predictive performance and total (mean) AGB precision. Additionally, including a Landsat-derived forest cover
covariate further improved precision in regions with lower lidar sampling intensity. Findings also demonstrate
that model-based approaches not explicitly accounting for residual spatial dependence can grossly underestimate
uncertainty, resulting in falsely precise estimates of AGB. The inferential capabilities of AGB posterior predictive
distribution (PPD) products extend beyond simply mapping AGB density. We show how PPD products can
provide insight regarding drivers of AGB heterogeneity in boreal forests, including permafrost and fire, high-
lighting the range of potential applications for Bayesian geostatistical methods to integrate field, airborne and
satellite data.

1. Introduction

Coupling remote sensing data with field-based forest measurements
via regression frameworks offers the potential to increase the precision
of inventory estimates and provides a mechanism for mapping the
spatial distribution of forest biophysical properties. A plethora of stu-
dies show strong relationships between lidar metrics and forest
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variables (Asner et al., 2009; Babcock et al., 2013; Finley et al., 2014b,
2017; Lim et al., 2003; Neesset, 2004, 2011). These findings have
spurred investment in collecting lidar data for large areas from aircraft
and satellites alike. Of particular interest is the use of lidar to assist in
the estimation of forest inventory parameters in high-latitude terrestrial
ecosystems. From a carbon monitoring perspective, forests in boreal
systems may contain large stores of aboveground biomass (AGB) and
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carbon, but the uncertainty associated with current estimates is ex-
tremely high (Bradshaw and Warkentin, 2015; Pan et al., 2011). Un-
derstanding that the taiga-tundra ecotone is one of the most vulnerable
environmental systems to climate change and that its boreal forests can
contribute substantially to the global carbon cycle, methods are needed
to begin monitoring forest carbon stocks and fluxes for these systems
(Gauthier et al., 2015; Magnani et al., 2007; Neigh et al., 2013).

Current approaches used by the United States Forest Service's
(USFS) Forest Inventory and Analysis (FIA) program to quantify AGB
and carbon stocks in temperate regions rely on extensive, spatially-
balanced field plot probability samples to generate forest inventory
estimates with acceptable levels of precision (Bechtold and Patterson,
2005; Woodall et al., 2015). In vast remote landscapes, implementing
the estimation techniques used by the FIA in the contiguous United
States becomes prohibitively expensive due to the high cost of col-
lecting field inventory data in difficult-to-access boreal regions, e.g.,
interior Alaska (Barrett and Gray, 2011). A potential solution com-
monly put forward to reduce the expense of monitoring AGB in boreal
forest systems is to augment sparse collections of field samples with
remote sensing auxiliary data (Wulder et al., 2012). Lidar-derived
measures of forest structure tend to be highly correlated with AGB field
observations and, thus, are prime candidates to supplement boreal field
campaigns. Additionally, passive sensors such as Landsat can be used to
derive remote sensing data products correlated with forest AGB (Kumar
et al., 2015). Methodologies leveraging relationships between field and
lidar can potentially be further improved by incorporating Landsat-
based products (Margolis et al., 2015; Pflugmacher et al., 2014; Powell
et al., 2010; Zheng et al., 2004).

Here, we address two challenges encountered when attempting to
estimate forest AGB for large areas using lidar coupled with other re-
mote sensing information: 1) incomplete spatial coverage of remote
sensing data; and 2) prediction uncertainty quantification. Incomplete
spatial coverage is a common problem for studies using airborne or
spaceborne lidar over sizable study domains (Andersen et al., 2011;
Bolton et al., 2013; Nelson, 2010; Nelson et al., 2004). Model-based
methodologies used to link field and lidar data to estimate and map
AGB typically require laser altimetry information for the entire spatial
domain of interest (Babcock et al., 2015, 2016; McRoberts et al., 2013).
The expansive nature of boreal systems, make wall-to-wall collections
of airborne lidar data unrealistic. Further, future spaceborne lidar sys-
tems are not designed to procure complete coverage information. Ra-
ther, these campaigns will collect data for relatively narrow bands
along the orbital tracts of the sensors' host satellite (GEDI, 2014; ICESat-
2, 2015). In order to glean any additional information provided by
sampled remote sensing data in a statistically rigorous manner, esti-
mation frameworks that can accommodate incomplete coverage aux-
iliary information are necessary.

The second issue examined here is the problem of obtaining useful
estimates of uncertainty about forest AGB stocks using model-based
statistical procedures—necessary for decision making with imperfect
predictions of forest AGB. In design-based estimation frameworks, error
is assumed to arise from the sampling design, which can be appro-
priately characterized when plots are selected probabilistically
(Cochran, 1977; Thompson, 2002). In model-based inference, error is
attributed to the underlying process by which the response, e.g., AGB, is
generated (Gregoire, 1998; Ver Hoef, 2002). Studies attempting to es-
timate means and totals for areal units using ancillary data within a
model-based paradigm need to specify frameworks that reliably ac-
commodate the structure of the data to be modeled. It can be the case
that modelers who attempt to use model-based forest inventory esti-
mation approaches posit potentially unrealistic assumptions about the
distributional characteristics of model errors, such as independent and
identically distributed (iid) errors. In a spatial context, it is likely the
field observations of AGB will be spatially autocorrelated. If the aux-
iliary information used in the model fails to fully account for the spatial
dependence among field observations, model-based approximations of
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AGB uncertainty can be grossly underestimated (Cressie, 1993; Griffith,
2005).

Coregionalization models constructed within a Bayesian hier-
archical framework offer a solution to both above-mentioned chal-
lenges (Gelfand et al., 2004). This class of multivariate spatial regres-
sion models is designed to predict multiple response variables
simultaneously while leveraging spatial cross-correlation structures
between error components of the responses. Further, the model can
accommodate spatial misalignment, i.e., missing response variable
measurements at some locations. If the lidar data is treated as an ex-
planatory variable (used on the right-hand side of the model as in most
lidar studies) predictions are only possible where lidar data is available.
Within a coregionalization model, the lidar-derived metrics can be
treated as additional response variables (moved to the left-hand side)
and jointly predicted with the response of interest, e.g., AGB, across the
entire landscape while explicitly modeling the spatially co-varying re-
lationship among the predictions within and across locations (Finley
et al., 2014a). A coregionalization framework also allows for the in-
clusion of wall-to-wall covariates derived from satellite data to assist in
the joint prediction of forest AGB and lidar information.

When multivariate coregionalization models are estimated using a
Bayesian hierarchical approach, uncertainty occurring at all levels of
the model can be propagated through to prediction and subsequent
estimation of means and totals for areal units (Berliner, 1996; Cressie
and Wikle, 2011; Gelfand and Smith, 1990; Hobbs and Hooten, 2015).
Forms of multivariate spatial prediction models have been in existence
since the 1960s, e.g., cokriging (Matheron, 1963). These non-hier-
archical implementations, however, struggle to effectively deal with
uncertainty associated with spatial covariance parameters, e.g., spatial
variances and decays (Diggle and Ribeiro, 2007, Section 7.1.1). Due to
increased computational efficiencies gained by ignoring uncertainty in
spatial variability, ‘plug-in’ spatial covariance parameters are used in
cokriging interpolation routines available in popular GIS software
packages. This limits their use for fully model-based predictive in-
ference (Schelin and Sjostedt-De Luna, 2010).

The development of inferential approaches for complex spatial
prediction within a statistical framework is an active area of research.
In a hierarchical modeling context, coregionalization frameworks can
be constructed using random effects that arise from spatially correlated
Gaussian processes and partition variability into spatial and non-spatial
components (Banerjee et al., 2014; Cressie et al., 2009). When for-
mulated as such, estimation approaches including Restricted Maximum
Likelihood (REML) or Markov chain Monte Carlo (MCMC) become
possible in frequentist and Bayesian paradigms of statistical model-
based inference, respectively (Ver Hoef et al., 2004). There are ad-
vantages to choosing a Bayesian hierarchical approach to inference
over counterpart frequentist methods. Access to the full posterior pre-
dictive distribution (PPD), a by-product of Bayesian inference, allows
for easy posterior summarization of means or totals with associated
uncertainty for the full spatial domain in addition to any sub-domains
that may be of interest-even under back-transformation (Stow et al.,
2006). Access to PPDs facilitate subsequent, i.e., post-model-fitting,
analysis to inform ecological or management objectives while ac-
counting for prediction uncertainty. However, these increases in flex-
ibility come with substantial increases in computational demand.

The aim of this study is to develop and examine the performance of
a statistical modeling framework that can 1) incorporate partial cov-
erage lidar data and wall-to-wall Landsat products to improve AGB
density prediction; and 2) accommodate spatially structured variability
unaccounted for by covariates, thereby allowing for more reliable
model-based characterizations of uncertainty (e.g., uncertainty inter-
vals with intended coverage) and improved prediction accuracy. We
look to the Tanana Inventory Unit (TIU) in interior Alaska to explore
the potential for the proposed coregionalization model to estimate
forest AGB stocking by coupling spatially sparse field inventory, partial
coverage lidar and Landsat-derived tree cover data products in boreal
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