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As LiDAR datasets increase in availability and spatial extent, demand is growing for analytical frameworks that
allow for robust comparison and interpretation among ecosystems. We utilize data-driven classification in a
hierarchical design to estimate forest structure classes with parsimony, flexibility, and consistency as priorities.
We use an a priori selection of six input features derived from small-footprint (32 cm), high density (17 returns/
m?) airborne LiDAR: four L-moments to describe the vertical distribution of canopy structure, canopy density as
a measure of vegetation coverage, and standard deviation of canopy density to characterize within-cell hor-
izontal variability. We identify 14 statistically-separated meta-classes characterizing six ecoregions over
168,117 ha in Montana, USA. Meta-classes follow four general vertical shapes: tall and continuous, short-single
strata, tall-single strata, and broken strata over short strata. Structure classes that dominate locally but are rare
overall are also identified. The approach outlined here allows for intuitive comparison and assessment of forest

structure from any number of landscapes and forest types without need for field training data.

1. Introduction

Forest structure is both a driver and product of ecosystem processes
(Spies, 1998; Shugart et al., 2010). A variety of connections exist be-
tween structure and ecosystem traits including biodiversity, habitat,
previous and future disturbance, successional trajectories, water inter-
ception, gas exchange, carbon storage, and productivity (Ellsworth and
Reich, 1993; Spies, 1998; Franklin et al., 2002; Parker et al., 2004;
Pregitzer and Euskirchen, 2004; Bergen et al., 2009; Culbert et al.,
2013; Johnstone et al., 2016). Characterizing forest structure and its
variation remains a priority for research and land management engaged
in conservation, restoration, and the ecological sciences.

Light detection and ranging (LiDAR) and related analyses have been
used to quantify and classify forest structure for a variety of applica-
tions (Lim et al., 2003; Vierling et al., 2008; Kane et al., 2010a; Miura
and Jones, 2010; Smart et al., 2012; Simonson et al., 2014; Listopad
et al., 2015). LiDAR can characterize the three-dimensional arrange-
ment of the overstory canopy, which correlates to biomass and other
structural metrics (Lefsky et al., 2002). In its raw form, a modern LiDAR
point cloud contains an abundance of height measurements that are
often summarized on raster grids to reduce data volumes and facilitate
development of predictive models (Yu et al., 2010; Wulder et al., 2013).
These so-called area-based approaches (ABAs) effectively predict forest
attributes and classify forest structure (e.g., Lefsky et al., 1999; Nasset,

2002; Zimble et al., 2003; Frazer et al., 2005; Lefsky et al., 2005; Coops
et al., 2007; Falkowski et al., 2009; Leiterer et al., 2015).

While applicable for a particular study area, ABA techniques tend to
produce features and models with unique properties, which often have
low generality (Lefsky et al., 2005; Bouvier et al., 2015). Differing
LiDAR sensor configurations and acquisition parameters, vegetation
types, structure attributes, and field collection methods contribute to
site-specific results. In addition, the widespread use of arbitrary canopy
height strata and percentiles provides no consistency, thereby confusing
potential comparisons, and may reduce the ability to accurately char-
acterize structural attributes (Chen, 2013; Gorgens et al., 2017). Field-
sampling usually provides the training and test data for classification
but adds considerable expense and rarely captures the range of varia-
bility over large spatial extents (Hawbaker et al., 2009; Maltamo et al.,
2011).

The latter limitation in particular has led to development of data-
driven approaches utilizing unsupervised or semi-supervised classifi-
cation methods (Kane et al., 2010a; Jones et al., 2012; Leiterer et al.,
2015; Vauhkonen and Imponen, 2016). The defining characteristic
distinguishing a data-driven approach from a standard ABA is that
classes are not predefined and thus depend on the characteristics of the
input datasets (e.g., Zhang et al., 2011; Dupuy et al., 2013; Kane et al.,
2013; Dickinson et al., 2014). Derived classes are centered on statistical
groupings (Halkidi et al., 2001) and may not match existing forest
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structure classifications. Depending on the features used in a classifi-
cation, interpretation of identified classes may also suffer from many of
the same aforementioned ABA limitations (e.g., Leiterer et al., 2015).

Much of the literature focusing on data-driven approaches is con-
cerned with selection of variables that best characterize and differ-
entiate forest structure types. Kane et al. (2010b) identified a subset of
LiDAR variables related to both field measurements and forest structure
complexity including 95th percentile height, mean height, height var-
iance, canopy density, and rumple. Similarly, Jones et al. (2012)
showed that certain structure classes (e.g., young forest versus mature
forest) could only be discriminated using specific metrics — in this case
the ordinary statistical moment kurtosis. The most frequently cited
variables in the literature consistently fall into the general categories of
forest height, height variability, and canopy cover, corresponding to the
classes noted by Lefsky et al. (2005). More than a decade later, the
literature has repeatedly revealed the utility of variables in these ca-
tegories for characterizing a variety of related forest structure classifi-
cations based on forest age (Jones et al., 2012), complexity (Kane et al.,
2010a, 2010b), number of strata (Whitehurst et al., 2013), tree size
(Kane et al., 2013; North et al., 2017), successional stage (Falkowski
et al., 2009), and forest type (Zhang et al., 2011) among others (Dupuy
et al., 2013; Dickinson et al., 2014; Niemi and Vauhkonen, 2016). The
diversity of variables combined with the diversity of classification
schemes adds complexity to forest characterization but still provides
strong underpinnings for development of more broadly applicable ap-
proaches.

As LiDAR datasets increase in availability and spatial extent, de-
mand is growing for unifying analytical frameworks that allow for
comparison and interpretation among and between landscapes with
and without supporting field data. At a minimum, such approaches
could support optimization of forest surveys by systematically de-
scribing structure variability, guiding field data collection, and de-
termining optimal plot dimensions (Frazer et al., 2011). A major chal-
lenge is the selection of a small set of LiDAR variables that not only can
discriminate relevant structure classes but can be interpreted by for-
estry professionals without supporting field data (Kane et al., 2010b). A
second challenge is development of classification methods to facilitate
natural groupings of structure attributes and common interpretations of
them across landscapes. These challenges provide the basis for our re-
search, which focuses on methods to: (1) discriminate natural groupings
of forest structure (classes) within landscapes using a few, interpretable
LiDAR metrics without the need for field training data, and (2) ag-
gregate structure classes across landscapes using a consistent set of
features. Our approach follows Frazer et al. (2011) who suggest parti-
tioning LiDAR into a few unique statistical classes each with relatively
homogenous properties. It addresses the sensitivity of statistical classes
to area and data parameters noted by Jones et al. (2012) by aggregating
multiple sub-classifications of individual landscapes to create ‘meta-
classes’. Leiterer et al. (2015) suggests this type of spatially stratified
classification to maintain localized distinctness when comparing di-
verse forest types.

We use machine learning to produce structure classes. Specifically, a
combination of Random Forests (RF, Breiman, 2001) to estimate dis-
similarity and predict classes and hierarchical clustering to group based
on dissimilarity (Murtagh and Legendre, 2014). Hierarchical clustering
has successfully grouped forest structure into ecologically-relevant
classes based on statistical distinctiveness (Latham et al., 1998; Kane
et al., 2010a; Kane et al., 2013). While machine learning techniques
excel at identifying complex, non-linear feature relationships (Lawrence
and Moran, 2015), their inherent nature and the propensity to use a
large number of input features contribute to ‘black-box’ classification. A
priori feature selection, with priority given to interpretable metrics and
low dimensionality, allows us to exploit the power of machine learning
and minimize the black-box effect.

The L-moments provide the basis of our a priori feature selection to
characterize the vertical domain of forest structure. L-moments have
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strong statistical underpinnings and provide a low-dimensional solution
to the complex problem of distribution characterization (Hosking,
1990). Multiple studies have utilized L-moments for characterizing
canopy structure with LiDAR data (Frazer et al., 2011; Ozdemir and
Donoghue, 2013; Valbuena et al., 2017). They are order statistics and
can be used to calculate features analogous to standard deviation,
skewness, and kurtosis (i.e. basic descriptors of theoretical distribu-
tions). Being linearly combined, they are less affected by outliers and
variation in sample sizes than standard product moments (Hosking,
1992). Furthermore, the L-moment ratios have finite theoretical bounds
allowing for comparisons of shape with different location and scale
(Hosking, 1990). Valbuena et al. (2017) utilized two L-moment ratios
describing LiDAR distributions, the L-coefficient of variation (L-CV) and
L-skewness, to classify key structural features of boreal forest canopies
without having to statistically link field data to LiDAR metrics. Simi-
larly, L-CV, L-skewness, and L-kurtosis explained unique and significant
structure variability in simulated forest stands (Frazer et al., 2011).
Hosking and Wallis (1997) provide an in-depth treatment of L-moments
and their formulation.

Alone, the L-moments are not sufficient to fully characterize forest
structure because, like many LiDAR point cloud derivatives, they do not
account explicitly for the abundance and horizontal distribution of
canopy structure within individual cells (Popescu and Zhao, 2008; Zhao
et al., 2009; Bouvier et al., 2015; Leiterer et al., 2015). Canopy density
(defined here as the number of first returns above 2 m height divided by
all first returns) provides a useful conception of the amount of vege-
tation coverage within a cell (Lefsky et al., 2002; Maltamo et al., 2016),
but lacks information on the within-cell, horizontal variability of ca-
nopy material. Sub-cell metrics that characterize variability in canopy
density or canopy density within different height strata have been used
to describe the horizontal distribution of vegetation and as predictors of
related field metrics (Lim and Treitz, 2004; Hudak et al., 2006).

The primary objective of our work is to develop a consistent, in-
terpretable, and flexible framework to identify and compare pre-
dominant forest canopy structures across diverse landscapes without
the need for field training data. We rely on a priori selection of input
features, using the four statistical L-moments, canopy density, and a
sub-grid metric called horizontal standard deviation of canopy density
(HSD of CD, defined in Section 2.3). We take an unsupervised classifi-
cation approach to estimate forest structure classes. RF identifies nat-
ural groupings within LiDAR datasets, hierarchical clustering groups
based on estimated dissimilarity, a second iteration of RF classifies
landscapes using cluster labels, and equivalence testing aggregates
landscape-specific classes to meta-classes. We use 168,117 ha of high-
density, small-footprint LiDAR data spanning six ecoregions in the
Northern Rocky Mountains, USA to develop and test our methods.

2. Methods
2.1. Study area

The study area is in the southwest portion of the 4 million ha Crown
of the Continent Ecosystem (CCE) in the Northern Rocky Mountains,
USA. In 2014-2015, the US Forest Service acquired airborne laser
scanning (ALS) data for the southwestern portion of the CCE. In 2015,
the University of Montana added two additional acquisitions on its
properties in the CCE. The extent of these datasets forms the boundary
of our study area. The study area was divided into 17 distinct land-
scapes delineated by LiDAR acquisition dates, ecoregion, and total area
(Fig. 1, Table 1). The landscapes cover 168,117 ha in a range of eco-
systems typical of the Northern Rocky Mountains from dry, low ele-
vation Pinus ponderosa forests to higher elevation, mixed-conifer forest
types. Six Omernik Level IV ecoregions are present in the study area
(Fig. 1; Omernik and Griffith, 2014). Elevations range from 1038 to
2544 m, annual precipitation from 405 to 1479 mm, and mean annual
temperature from 1.3-6.4°C (Table 1; PRISM, 2012). Pseudotsuga
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