
Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Influence of species richness, evenness, and composition on optical
diversity: A simulation study

Ran Wanga,⁎, John A. Gamona,b,c, Anna K. Schweigerd, Jeannine Cavender-Baresd,
Philip A. Townsende, Arthur I. Zygielbaumc, Shan Kotharif

a Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
bDepartment of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
c School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
d Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
e Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
fDepartment of Plant Biological Sciences, University of Minnesota, Saint Paul, MN 55108, USA

A R T I C L E I N F O

Keywords:
Biodiversity
Remote sensing
Optical diversity
Imaging spectroscopy
Cedar Creek

A B S T R A C T

While remote sensing has increasingly been applied to estimate α biodiversity directly through optical diversity,
there is a need to better understand the mechanisms behind the optical diversity-biodiversity relationship. Here,
we examined the relative contributions of species richness, evenness, and composition to the spectral reflectance,
and consider factors confounding the remote estimation of species diversity in a prairie ecosystem experiment at
Cedar Creek Ecosystem Science Reserve, Minnesota. We collected hyperspectral reflectance of 16 prairie species
using a tram-mounted imaging spectrometer, and a full-range field spectrometer with a leaf clip, and simulated
plot-level images from both instruments with different species richness, evenness and composition. Two optical
diversity metrics were explored: the coefficient of variation (CV) of spectral reflectance in space and classified
species derived from Partial Least Squares Discriminant Analysis (PLS-DA), a spectral classification method. Both
optical diversity metrics (CV and PLS-DA classified species) were affected by species richness and evenness.
Diversity metrics that combined species richness and evenness together (e.g. Shannon's index) were more
strongly correlated with optical diversity than either metric alone. Image-derived data were influenced by both
leaf traits and canopy structure and showed larger spectral variability than leaf clip data, indicating that sam-
pling methods influence optical diversity. Leaf and canopy traits both contributed to optical diversity, sometimes
in complex or contradictory ways. Large within-species variation sometimes confounded biodiversity estimation
from optical diversity, and a single species markedly altered the optical-biodiversity relationship. Biodiversity
estimation from CV was strongly influenced by soil background, while estimation from PLS-DA classified species
was not sensitive to soil background. These findings are consistent with recent empirical studies and demonstrate
that modeling approaches can be used to explore effects of spatial scale and guide regional studies of biodiversity
estimation using high spatial and spectral resolution remote sensing.

1. Introduction

“Optical diversity” (Ustin and Gamon, 2010), sometimes called
“spectral diversity” (Palmer et al., 2002), indicates the variation in
spectral reflectance detected by optical remote sensing. Many remote
sensing indices have been applied to assess vegetation diversity and
composition using optical measurements. These metrics can be divided
into two major categories: 1) species-based metrics; and 2) information
content-based metrics. Species-based metrics typically apply a classifi-
cation, either unsupervised (Féret and Asner, 2014) or object-based

(Schäfer et al., 2016), to the remotely sensed images. Indices calculated
using these classified “spectral species” (Féret and Asner, 2014) are
then related to plant diversity. Here, we expanded the term “spectral
species” (Féret and Asner, 2014) to species classified from remote
sensing data using any classification method. In this case, spectral
species are considered proxies for biological species, and spatial var-
iation in spectral species can be used to infer species richness or other
metrics of α diversity, and over larger areas, β diversity.

Several factors conspire to complicate species-based methods of
detecting biodiversity using remote sensing. Variation of plant leaf
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traits and canopy structure across environmental gradients (i.e. phe-
notypic variation) can lead to high spectral variability within species
(Asner, 1998). Similarly, temporal variation in leaf traits, e.g., due to
leaf aging, can generate large intra- and interspecific variation, which
could potentially confound species identification through spectral re-
flectance (Chavana-Bryant et al., 2017). These challenges in species-
based approaches to biodiversity detection have led to alternate
methods based on information content.

Information content-based metrics extract information from the
spectral space in a number of ways, for example, by calculating the
variance of vegetation reflectance indices (e.g., NDVI) (Carlson et al.,
2007; Gould, 2000), the coefficient of variation derived from spectral
reflectance (Wang et al., 2016a), or the distance from the spectral
centroid (Palmer et al., 2002). Alternatively, information content-based
metrics can be obtained from patterns in principal component space,
such as the distance from the centroid (Rocchini, 2007), which com-
pacts spectral information and removes noise and band collinearity
(Thompson et al., 2017).

When comparing optical diversity to α diversity, stronger relation-
ships emerge when considering both species richness and evenness
(e.g., Shannon's index) relative to either diversity measure alone
(Oldeland et al., 2010; Wang et al., 2016a). Species evenness adds
additional information on stand composition, which affects spectral
variation. However, it is not clear how or to what extent species rich-
ness, evenness, and composition affect the overall optical signal, in part
because experimental approaches are difficult to apply in remote sen-
sing studies due to the large spatial scales involved. Furthermore, soil is
known to confound optical diversity estimation (Gholizadeh et al.,
2018) and these effects (species richness, evenness, composition and
soil background) can be scale-dependent (Wang et al., 2018) requiring
studies to be explicit about the spatial, temporal and spectral scales
involved.

To help address these issues, we applied a modeling framework to
investigate the effect of species richness, evenness and composition on
optical diversity using simulated hyperspectral images. For this simu-
lation, leaf reflectance measurements collected in the Cedar Creek long-
term biodiversity experiment (BioDIV) (Reich et al., 2012; Tilman,
1997) were used to model synthetic plot-level images with different
combinations of species richness, evenness, and composition. In this
modeling study, leaf spectra were collected in two ways: 1) using a leaf
clip that normalized sampling geometry and illumination; and 2) using
an imaging spectrometer mounted on a tram system that allowed for
natural variation in leaf orientation and illumination. Two types of
optical diversity metrics, the coefficient of variation (CV) and spectral
species derived from Partial Least Squares Discriminant Analysis (PLS-
DA) (Peerbhay et al., 2013), were used to estimate vegetation diversity.
In this study, by calculating optical diversity metrics on simulated
images derived from leaf-level and image-derived spectra, we addressed
the following four questions: 1) how do species richness, evenness, and
composition affect optical diversity? 2) how do sampling methods affect
optical diversity? 3) how does within-species variation affect the optical
diversity-vegetation diversity relationship? and 4) how does soil back-
ground affect optical diversity?

2. Methods

2.1. Study site

Data used in this study were collected at the Cedar Creek Ecosystem
Science Reserve, Minnesota, USA (45.40° N, 93.19° W). Since 1994, the
BioDIV experiment has maintained 167 experimental plots (9 m×9m)
with planted species richness ranging from 1 to 16 species per plot
(Tilman, 1997). The species planted in each plot were randomly se-
lected from a pool of 18 species typical of Midwestern prairie, including
C3 and C4 grasses, legumes, forbs and trees. Plots were weeded 3 to 4
times each year to remove species not included in the desired pool

(Reich et al., 2012; Tilman et al., 2001).

2.2. Spectral data

2.2.1. Leaf-level reflectance
We collected leaf level reflectance using a full range spectrometer

(HR-1024i, Spectral Vista Corporation, Poughkeepsie, NY, USA) cou-
pled with a leaf clip with an internal light source (LC-RP PRO; Spectra
Vista Corporation, Poughkeepsie, NY, USA). The spectral range of the
spectrometer covered 340.5 to 2522.8 nm in 1024 spectral bands. Noisy
spectral regions (wavelengths smaller than 400 nm and>2400 nm)
were excluded from analysis. During field measurements, leaf level
measurements (Ltarget, λ) were referenced to a white calibration disc of
the leaf clip (Lwhite reference, λ) approximately every 5min. Dark current
radiance was subtracted internally, and relative spectral reflectance
was calculated as (ρλ):

=ρ L /Lλ target,λ white reference,λ (1)

We measured up to 16 prairie species (Table 1) in 24 BioDIV plots.
We visually divided each plot into 9 subplots and sampled four, six or
eight subplots, depending on the planted species richness (four for one
or two planted species per plot, six for four species per plot, and eight
for eight or 16 species per plot). We randomly placed a 1× 1 m frame
in each sampled subplot and measured one individual of each of the
four most abundant species, with duplication of species possible when
we found fewer than four species per subplot. As a consequence, the
sample size of each species correlated with the abundance of that
species encountered during our field sampling.

In order to measure reflectance of grasses and herbaceous species
with small leaves, we aligned small leaves in the foreoptic, avoiding
overlap of adjacent leaves, covering a minimum of about 50% of the
field of view. We judged a measurement as “good” when reflectance in
the NIR shoulder (about 800 nm) was as at least 35% or higher. Soil
radiance spectra were collected using a full range spectrometer (PSR
3500, Spectral Evolution, Lawrence, MA, USA) coupled with a 4-degree
lens (Spectral Evolution, Lawrence, MA, USA) in the bare ground plots
of the BioDIV experiment in July 2016. A white reference panel
(Spectralon, Labsphere, North Sutton, NH, USA) was used to calculate
relative reflectance of the soil. The leaf-level data is available from
EcoSIS Spectral Library (https://data.ecosis.org/dataset/leaf-spectra-
big-biodiversity-experiment-cedar-creek-lter).

2.2.2. Image-derived reflectance
A push-broom imaging spectrometer (E Series, Headwall Photonics

Inc., Fitchburg, MA, USA) mounted on a tram system (Gamon et al.,
2006) at 3m above the ground surface was used to collect fine-scale
images (1 mm2 pixel resolution) of the northern-most row of each

Table 1
Species, abbreviations, and sample size per species of leaf reflectance spectra.

Species Abbrev No. of samples

Achillea millefolium L. ACHMI 134
Amorpha canescens Pursh AMOCA 88
Andropogon gerardii Vitman ANDGE 577
Asclepias tuberosa L. ASCTU 249
Koeleria cristata auct. non Pers. p.p. KOECR 44
Lespedeza capitata Michx. LESCA 370
Liatris aspera Michx. LIAAS 195
Lupinus perennis L. LUPPE 380
Monarda fistulosa L. MONFI 74
Panicum virgatum L. PANVI 169
Petalostemum candidum (Willd.) Michx. PETCA 88
Petalostemum purpureum (Vent.) Rydb. PETPU 157
Petalostemum villosum Nutt. PETVI 137
Poa pratensis L. POAPR 49
Schizachyrium scoparium (Michx.) Nash SCHSC 260
Solidago rigida L. SOLRI 173
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