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A B S T R A C T

In this study, the segmented particle swarm optimization (SPSO) algorithm and the concepts of the gradient
boosting decision tree algorithm (GBDT) were combined to propose the SPSO adaptive neural network (SANN)
method. The purpose of this method is to address the inadequacies of the traditional basis function (BP) and
radial basis function (RBF) neural networks when solving problems that involve local optima and overfitting.
Experimental results indicated that, overall, the SANN method is accurate in remote-sensing estimations of
aquatic vegetation biomass. However, accuracies of estimations were unsatisfactory for certain indicators and
sessions when data was taken. The estimations were analyzed using three sets of indicators: (i) root mean square
error, average relative error, and total relative error; (ii) correlation coefficient and coefficient of determination,
and their scatter plots; and (iii) relative error values and their distributions. The results clearly showed that the
SANN method was superior to the BP neural network as well as the stepwise multiple linear regression analysis
(SR). However, when the relative errors in biomass estimations by the other two methods were low, the ad-
vantages of the SANN method were less pronounced. This was particularly true when the relative errors
were< 30%, in which case SANN was only marginally better than the other two methods.

1. Introduction

Above-ground biomass (AGB) is not only a major indicator of re-
gional carbon cycling, but also serves as a critical indicator used in
health assessment of vegetation ecosystems (Liang et al., 2016), in-
cluding aquatic vegetation ecosystems. Thus, AGB monitoring of ve-
getation ecosystems is vital to ensure their ability to maintain necessary
ecosystem services (Shoko et al., 2016). Currently, AGB monitoring is
primarily accomplished by two means: field surveys or remote sensing
estimations. Remote sensing estimations provide several advantages for
AGB monitoring at a regional scale. These include increased speed as
well as lower labor and economic costs. Biomass estimations through
remote sensing are also more contiguous at the spatial scale and can be
extended to the temporal scale (subject to the availability of remote
sensing images). Therefore, remote-sensing estimations play an in-
creasingly critical role in AGB monitoring of vegetation coverage
(Costa, 2005; Silva et al., 2010; Goetz and Dubayah, 2011; Byrd et al.,
2014), and an increasing number of researchers have focused their at-
tention on this topic (e.g., Hall et al., 1997; Silva et al., 2010; Liao et al.,
2013; Lu et al., 2014; Verrelst et al., 2015; Shen et al., 2015; Shoko

et al., 2016; Liang et al., 2016; Gao et al., 2017).
Two main approaches are used to conduct remote-sensing estima-

tions of biomass. The first approach is based on empirical models that
are constructed using biomass data obtained from field surveys and
spectrum characteristics of remote sensing images. The second ap-
proach involves substituting ecological parameters acquired from re-
mote sensing images into models based on vegetation growth to esti-
mate biomass (Hall et al., 1997; Fang et al., 2003). Regarding the
second approach, relatively few studies have been conducted on the
effects that the inherent complexities of the vegetation growth model
(such as the model's need for numerous input parameters) have on re-
mote-sensing estimations of vegetation biomass (Shoko et al., 2016).
The first approach is simpler, leading to its widespread application for
such estimations (Shoko et al., 2016). This is particularly the case with
aquatic vegetation biomass, for which this approach predominates.

Currently, empirical models for remote-sensing estimations of
aquatic vegetation biomass are built using two types of algorithms:
parametric or non-parametric (Verrelst et al., 2015). The exact methods
include linear regression using a single regressor (e.g., Zhang, 1998;
Gao et al., 2017), multiple (stepwise) linear regression (e.g., Zhang,
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1998; Silva et al., 2010), and back propagation artificial neural net-
works (e.g., Liao et al., 2013; Shen et al., 2015). Researchers have
shown that parametric algorithms are not capable of capturing the
complex relationships between remote sensing variables and AGB (Lu
et al., 2014; Verrelst et al., 2015; Shoko et al., 2016). More advanced
machine learning algorithms (e.g., artificial neural networks) have been
shown to enhance the predictive accuracy of grass AGB (Shoko et al.,
2016). Traditional neural networks use gradient descent for perfor-
mance optimization. Gradient descent is a first-order iterative optimi-
zation algorithm used to find the values of the parameters of a function
that minimize a cost function and is a popular method in the field of
machine learning. However, the gradient descent method has limited
ability to deal with complex high-dimensional spaces and is often
trapped by local optima. Consequently, traditional neural networks
cannot manage complex data effectively. This causes over- or under-
fitting, resulting in reduced model accuracies. Neural networks usually
involve various parameters that require adjustments, and parameters
such as network weights and offsets are adjusted through error back
propagation. Therefore, high-dimensional spaces formed by multiple
parameters are likely to contain many locally optimal solutions. For
error back propagation, the parameter adjustment mode is also sus-
ceptible to the effects of gradient dispersion and saturation of activation
functions. This delays adjustments to any underlying parameters, which
hinders convergence of the neural networks (Glorot and Bengio, 2010).

Particle swarm optimization (PSO) is a stochastic population-based
optimization method proposed by Kennedy and Eberhart (1995). It
solves a problem by constructing a population of candidate solutions
obtained by moving particles in the search-space according to simple
mathematical formulae to set a particle's position and velocity. Each
particle's movement is influenced by its local best known position, but
is also guided toward the best known positions determined by other
particles in the search-space. This process is expected to move the
swarm toward the best (global) solution (Thamaraichelvi and Yamuna,
2016). Particle swarm optimization is a metaheuristic, as it makes few
or no assumptions about the problem being optimized and can search
very large spaces for candidate solutions. It has been successfully ap-
plied to many problems such as artificial neural network training,
function optimization, fuzzy control, and pattern classification
(Bonyadi and Michalewicz, 2017).

Based on these considerations, the main purposes of this study are as
follows: (i) combine the segmented particle swarm optimization (SPSO)
algorithm and the concepts of the gradient boosting decision tree
(GBDT) algorithm to develop an SPSO adaptive neural network (SANN)
model that addresses the inadequacies of traditional methods such as
basis function (BP) and radial basis function (RBF) neural networks
when solving problems that involve local optima and overfitting; (ii)
apply the SANN method in experiments involving remote-sensing esti-
mations of aquatic vegetation biomass (in this study, the term refers to
the above-ground wet weight biomass of emergent vegetation) in Lake
Tai, China and evaluate the method's accuracy; and (iii) compare the
differences in accuracies among the remote-sensing estimations of
aquatic vegetation biomass derived from the SANN method, BP neural
network (hereafter “BP method”), and stepwise multiple linear regres-
sion analysis (hereafter “SR method”), as well as analyze the strengths
and weaknesses of the SANN method for such estimations.

2. Methodology

2.1. Segmented particle swarm optimization

When a high-dimensional space is optimized, multiple optimal and
locally optimal solutions are usually present. To avoid being trapped by
local optimal solutions, maintaining the diversity of the particle swarm
is critical. Assigning separate tasks to different particles is also neces-
sary. The goal is then achieved by setting target milestones and timely
adjustments of each particle's task. Thus, an SPSO algorithm was

proposed (Li et al., 2017), where SPSO refines the population grouping
and divides the iterative optimization process into multiple sub-pro-
cesses. This is different from the original iteration, which is transient
and irreversible. Thus, with SPSO, the trap of local optima is avoided.
Example movements of SPSO particles are shown in Fig. 1.

The population is first separated into three subgroups in descending
order of adaptability: leaders, follower particles, and explorer particles.
Among the leaders, the particle that is most adaptable is the global
leader, and the rest are local leaders. During each iteration, the global
leader remains stationary. This prevents any existing solutions from
being omitted and preserves the current optimal solution. Each local
leader maintains its proximity to the global leader and its own optimal
solution. Each follower particle tracks three extrema: the global leader,
its closest local leader, and its own optimal solution. In addition,
random dithering is introduced among the local leaders and follower
particles to improve their search capabilities. Finally, the explorer
particles conduct random searches within the entire search space. After
each iteration, the population is re-categorized by SPSO based on the
respective particles' prevailing adaptability rankings.

Because SPSO does not have any inertial weight, the entire iterative
process is implemented through multiple subprocesses. These sub-
processes are divided into a divergent search phase t1 and a refined
mining phase t2. During phase t1, the numbers of leaders and follower
particles are reduced to their minimum. Most particles in the popula-
tion are then explorer particles that conduct divergent searches for
more optimal solutions within the search space. Once a new solution
that is more optimal than the prevailing optimal solution is found, the
entire population transitions immediately to phase t2. When this oc-
curs, the number of explorer particles is reduced to its minimum. The
vast majority of particles are then leaders and follower particles, which
conduct refined searches on the optimal solution identified during the
previous phase. If no solution that is more optimal is found after a
specified period of refined searching, the algorithm is considered to be
trapped by local optima. The process returns to phase t1 so that the
population can diverge to the surrounding space, thereby expanding the
search range and increasing its diversity.

The transition between phases t1 and t2 is regulated by a control
factor m. When no solution that is more optimal is found after m suc-
cessive iterations, the population begins an exploratory search. The
upper limit of the algorithm's step size is one-tenth the search space.
Based on this, the value of m is usually set to 10–20 to guarantee the
algorithm's early exploratory capabilities, while its refined search
capabilities are implemented at a later phase. In this study, we calculate
m as follows:
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where T and t are the upper limit and current number of the iteration,
respectively.

The velocity function of the improved particle swarm algorithm is

Fig. 1. Division and movement of particle swarm.
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