
Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

A high-performance and in-season classification system of field-level crop
types using time-series Landsat data and a machine learning approach

Yaping Caia,b, Kaiyu Guanb,c,⁎, Jian Pengd,⁎⁎, Shaowen Wanga,b, Christopher Seiferte,
Brian Wardlowf, Zhan Lig

a CyberGIS Center for Advanced Digital and Spatial Studies, Department of Geography and Geographical Information Sciences, University of Illinois at Urbana-Champaign,
Urbana, IL, United States
bNational Center for Supercomputing Center, University of Illinois at Urbana Champaign, Urbana, IL, United States
c Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States
d Department of Computer Science, University of Illinois at Urbana Champaign, Urbana, IL, United States
e Department of Earth System Science, Stanford University, Stanford, CA, United States
f Center for Advanced Land Management Technologies, School of Natural Resources, University of Nebraska-Lincoln, United States
g School for the Environment, University of Massachusetts Boston, Boston, MA, United States

A R T I C L E I N F O

Keywords:
Crop type classification
Machine learning
Remote sensing
Phenology
Deep Neural Network (DNN)

A B S T R A C T

Accurate and timely spatial classification of crop types based on remote sensing data is important for both
scientific and practical purposes. Spatially explicit crop-type information can be used to estimate crop areas for a
variety of monitoring and decision-making applications such as crop insurance, land rental, supply-chain lo-
gistics, and financial market forecasting. However, there is no publically available spatially explicit in-season
crop-type classification information for the U.S. Corn Belt (a landscape predominated by corn and soybean).
Instead, researchers and decision-makers have to wait until four to six months after harvest to have such in-
formation from the previous year. The state-of-the-art research on crop-type classification has been shifted from
relying on only spectral features of single static images to combining together spectral and time-series in-
formation. While Landsat data have a desirable spatial resolution for field-level crop-type classification, the
ability to extract temporal phenology information based on Landsat data remains a challenge due to low tem-
poral revisiting frequency and inevitable cloud contamination. To address this challenge and generate accurate,
cost-effective, and in-season crop-type classification, this research uses the USDA's Common Land Units (CLUs)
to aggregate spectral information for each field based on a time-series Landsat image data stack to largely
overcome the cloud contamination issue while exploiting a machine learning model based on Deep Neural
Network (DNN) and high-performance computing for intelligent and scalable computation of classification
processes. Experiments were designed to evaluate what information is most useful for training the machine
learning model for crop-type classification, and how various spatial and temporal factors affect the crop-type
classification performance in order to derive timely crop type information. All experiments were conducted over
Champaign County located in central Illinois, and a total of 1322 Landsat multi-temporal scenes including all the
six optical spectral bands spanning from 2000 to 2015 were used. Computational experiments show the inclusion
of temporal phenology information and evenly distributed spatial training samples in the study domain improves
classification performance. The shortwave infrared bands show notably better performance than the widely used
visible and near-infrared bands for classifying corn and soybean. In comparison with USDA's Crop Data Layer
(CDL), this study found a relatively high Overall Accuracy (i.e. the number of the corrected classified fields
divided by the number of the total fields) of 96% for classifying corn and soybean across all CLU fields in the
Champaign County from 2000 to 2015. Furthermore, our approach achieved 95% Overall Accuracy by late July
of the concurrent year for classifying corn and soybean. The findings suggest the methodology presented in this
paper is promising for accurate, cost-effective, and in-season classification of field-level crop types, which may
be scaled up to large geographic extents such as the U.S. Corn Belt.
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1. Introduction

Accurately classifying crop types is important for both scientific and
practical purposes. Classifying land cover is a classic question in the
remote sensing field, and has been an active research topic for decades
(Hansen et al., 2014, 2011, 2000; Hansen and Loveland, 2012; King
et al., 2017; Sexton et al., 2013b; Song et al., 2017; Vogelmann et al.,
2001; Zhan et al., 2002). However, how to generate accurate and timely
maps for crop types with high spatial resolution remains a scientific
challenge. Currently, we have no in-season crop type data available for
large-scale US croplands. For example, though the USDA publishes the
Cropland Data Layer (CDL) data at 30-m spatial resolution, it is usually
released in the spring of the subsequent year, with a time lag of at least
four to six months after the previous year's harvest time (Boryan et al.,
2011). For practical purposes, accurate and timely crop-type classifi-
cation provides estimations of the planting/harvesting crop areas for a
variety of monitoring and decision-making applications of government
and private sectors such as crop insurance, land rental, supply-chain
logistics, commodity markets, etc. Furthermore, crop-type classification
is also the prerequisite for conducting crop yield prediction (Bolton and
Friedl, 2013; Lobell et al., 2015). As a result, accurate and in-season
information of crop types has considerable importance for management
decision-making in public/private sectors and regional economic fore-
casting.

Extensive research has been done in crop-type classification using
two major classification strategies (Chang et al., 2007; Foerster et al.,
2012; Lobell and Asner, 2004; Van Niel and McVicar, 2004). One is to
solely use the spectral features from a single satellite scene sampled
during a certain day within a growing season (Boryan et al., 2011; Van
Niel and McVicar, 2004; Yang et al., 2011), and the other is to use both
spectral and temporal information during one or multiple growing
seasons (Chang et al., 2007; Foerster et al., 2012; Wardlow et al., 2007;
Wardlow and Egbert, 2008). The first strategy is based on the rationale
that different land covers have distinctive spectral features, and these
spectral features in turn can be used for classification. However, some
crops have similar spectral information during the peak-growing season
when the satellite image is usually acquired, which makes separation of
crop types difficult. In addition, spectral differences between crops and
natural vegetation (e.g. grass or trees) may be small at certain times of a
year. As a result, the similar spectral features between different crops as
well as between crops and natural vegetation pose a major challenge for
accurate classification. The second strategy utilizes both the spectral
and temporal information, which leads to improvements in classifica-
tion accuracy. Crops usually have different seasonal variations and
sowing dates. For example, in the U.S. Corn Belt, corn is usually sown
earlier than soybean, and grass usually starts its growing season in
spring that is earlier than most crops. These temporal features can be
used to improve the accuracy of crop classification. However, the
second strategy requires time-series information from multiple satellite
images rather than from a single image, and traditionally researchers
have implemented this approach using data from sensors with low- or
medium- spatial resolution such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Wardlow et al., 2007; Wardlow and
Egbert, 2008).

To achieve field-level classification of crop types, appropriate spa-
tial resolution satellite data inputs to field sizes are required (Lobell,
2013). For the U.S. context, such satellites exist, such as Landsat
(Hansen and Loveland, 2012; Roy et al., 2014). Landsat imagery has a
higher spatial resolution (30m) than low- or medium- spatial resolution
e.g. MODIS data (gridded at 250m, 500m or larger pixel sizes); and
unlike SPOT (Duro et al., 2012) and other commercial satellite data,
Landsat data is freely available for both concurrent and historical per-
iods. In addition, advanced Landsat products such as the surface re-
flectance (after atmospheric correction) are readily available from the
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
(Schmidt et al., 2013) and the Landsat Surface Reflectance Code

(LaSRC) (USGS, 2016) for Landsat 5, 7 and 8. Landsat data has been
widely used for land cover classification at local, regional or continental
scales (Hansen and Loveland, 2012; Homer et al., 2004; Huang et al.,
2007; Liu et al., 2005; Sexton et al., 2013a; Townshend et al., 2012;
Yuan et al., 2005). However, Landsat has a low temporal resolution (16-
day revisiting cycle compared to the 1–2-day revisiting cycle of
MODIS), and clouds frequently contaminate Landsat images. Extracting
the continuous time-series information based on Landsat data (espe-
cially how to handle missing data because of cloud cover) is a chal-
lenge. To utilize both high spatial and temporal information in Landsat,
researchers have explored data-fusion approaches to integrate multi-
sources of remotely sensed data, for example, fusing MODIS and
Landsat data to achieve both high spatial and temporal resolutions (Gao
et al., 2015, 2013). However, the existing data-fusion approaches
usually fill the gap values from neighboring available pixels by as-
suming that different periods of satellite images have unchanged land
cover types, thus contradicting the purpose of identifying land cover
changes over the time. Additionally, fused satellite data is currently not
available or operationally provided at a large spatial scale.

As an alternative, we use the Common Land Unit (CLU) to aggregate
field level information based on time-series Landsat data. CLUs are
generated by the USDA to delineate the field boundary for all registered
agricultural fields for the U.S. (Boryan et al., 2011). The average size of
a single unit of CLU in Champaign County, IL, is 60.3 ± 52.6 acres
(~244,025 ± 212,865m2), which is about 16×16 ± 15×15 30-
meter Landsat pixels (Fig. S1). When a CLU field has a sub-field con-
tamination by clouds/shadows in a Landsat scene, we aggregate
Landsat information by averaging values from non-cloud only pixels
within that field and assign the mean value to that CLU field. Thus the
contamination issues can be overcome to a desirable extent, and as a
result, the weakness of lower temporal-resolution Landsat data can be
largely alleviated. The aggregated and field-level spectral information
will then be used for classification. In addition, instead of only using the
data for the same year for training/testing for crop-type classification
(Boryan et al., 2011; Wardlow and Egbert, 2008), we can also use the
data from multiple growing seasons for training our classification
model, with the premise that multiple-year data include more scenarios
of crop phenology due to various other factors (e.g. sowing date, inter-
annual climate variability) and thus can make our classification algo-
rithm more generic and robust when applying to a new year.

Machine learning approaches have been applied to a variety of data-
driven predictive applications, such as natural language understanding
and image processing (Collobert and Weston, 2008; Hinton et al., 2012;
Krizhevsky et al., 2012). Recently, deep learning, including both the
Deep Neural Network (DNN) and the Convolutional Neural Network
(CNN), shows great potential in various applications compared to other
machine learning techniques. Traditionally, classification or regression
systems require careful engineering and considerable domain knowl-
edge to extract features from raw data. However, deep learning has the
ability to discover informative features with multiple levels of re-
presentation, from lower, primitive levels to higher, abstract levels
(LeCun et al., 2015; Schmidhuber, 2015). Though neural network
methods have been developed several decades ago, recently years see
major development in this method through more layers and back-pro-
pagation optimization (i.e. deep neural network), which has made
significant improvements in classification or other applications (LeCun
et al., 2015; Schmidhuber, 2015). Deep learning is still early in its
application on remote sensing data for crop-type classification; there-
fore questions like what information is needed and how to transform
the information that can be used in deep learning model need to be
answered.

This paper describes a new crop classification system that is targeted
at the U.S. Corn Belt, a region dominated by corn and soybeans. We
only focused on farmland and pre-filtered other types of land cover
(based on CDL), and classified all the patches of farmland into three
major categories: corn, soybean and others. We used CLU to aggregate
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