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A B S T R A C T

The accuracy of digital elevation models (DEMs) derived from structure-from-motion (SFM) multi-view stereo
(MVS) 3D reconstruction is commonly computed for a single realization of model elevations. This approach may
be adequate to estimate an overall measure of systematic error; however, it cannot provide a good estimation of
measurement precision. Knowing measurement precision is crucial for measuring elevation surface changes
observed by DEM comparisons. In this paper, we illustrate an approach to characterize spatial variation in the
precision for SFM-MVS derived DEMs. We use a snow-covered surface of an active rock glacier located in the
southern French Alps as the case study. A spatially varying precision estimate is calculated from repeated close-
range aerial surveys for a single acquisition period by calculating the standard deviation per grid cell between
the DEMs created for each flight repetition. Regression analysis using a generalized additive model (GAM) is
performed to model the estimated precision and provide insights regarding how sensor, survey design and field
site conditions may spatially influence the measurement precision. Additionally, we define how DEM error can
be described differently depending on the available validation data. In our study image height above ground
level and distance to ground control points had the greatest explanatory power for spatial variation in DEM
precision. Image overlap, mean reprojection error and saturation were also useful for explaining spatially
varying measurement precision of the DEMs. Field site characteristics, such as slope angle and shading, had the
least importance in our model of precision. From a practical point of view, regression-modeled relationships
between precision and image and site characteristics can be utilized to design future surveys with similar sensing
platforms and site conditions for improved DEM precision.

1. Introduction

One of the most recent developments in digital elevation model
(DEM) generation methods is the use of structure-from-motion (SFM)
and multi-view stereo (MVS) 3D reconstruction techniques (James and
Robson, 2012; Westoby et al., 2012; Micheletti et al., 2015b; Smith
et al., 2015; Carrivick et al., 2016). In general, these techniques can
create a 3D reconstruction of a surface from a collection of images for a
given feature taken from a variety of viewing angles (Snavely et al.,
2006). It has become vastly popular for geosciences applications (see
Carrivick et al., 2016 for an extensive list). As with the use of any DEM,
it is crucial to understand the quality of the SFM-MVS derived DEMs to
ensure the suitability for a particular application.

The quality of DEMs can be described by analyzing its errors (Fisher,
1998). In general, all DEMs inherently contain some error (Fisher and
Tate, 2006), and systematic and random error structures can vary

between different sensors and survey designs (Wilson, 2010). These
errors will propagate to DEM derivatives, such as slope, aspect and the
hydrologic or geomorphic models that utilize these derivative products
(Holmes et al., 2000; Walker and Willgoose, 1999). As a result, DEM
error can contribute to the uncertainties related to monitoring Earth
surface changes (Brasington et al., 2000; Burns et al., 2010; Wyrick and
Pasternack, 2016). A model of DEM error can be developed to char-
acterize DEM uncertainty for a particular survey technique and site
(Holmes et al., 2000; Wheaton et al., 2010; Tinkham et al., 2014;
Bangen et al., 2016). Such a model can be used to not only determine
possible sources of errors, but also to improve methods of DEM pro-
duction (Fisher, 1998; Carlisle, 2005; James and Robson, 2014; James
et al., 2017b).

The most common approach to modeling the spatial variation in
DEM errors has typically been to stochastically simulate DEM error
distributions (Fisher, 1998; Fisher and Tate, 2006; Kyriakidis et al.,
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1999; Holmes et al., 2000; Wechsler and Kroll, 2006). Recently, such an
approach has been applied to assess error in SFM-MVS elevation models
using Monte Carlo simulation; in particular, the authors evaluated how
survey design may influence the distribution of precision in a DEM
(James et al., 2017a,b). Since there are numerous factors that can lead
to errors in the SFM-MVS DEM (Smith and Vericat, 2015), it is possible
that the simulation approach could potentially overlook factors, such as
field conditions (Favalli et al., 2012), that may affect the distribution of
error in DEMs derived from SFM-MVS 3D reconstruction.

The purpose of this study is to assess DEM error by estimating
measurement precision of SFM-MVS derived DEM values to char-
acterize how precision may spatially vary and to explain this varia-
bility. Repeat aerial surveys from an unmanned aerial vehicle (UAV)
can be used to create multiple DEMs for estimating precision. This
approach computes the precision for individual grid cells of the DEM
image of surface elevations. That is, we estimate the precision corre-
sponding to each grid cell. In this way, we are treating each grid cell as
a separate measurement, and we are using a model of error that allows
for the values of precision to vary spatially. Additionally, a generalized
additive model (GAM), a nonlinear statistical regression technique, is
used for characterizing the spatial variation in precision by modeling
the respective influences of sensor, survey and field site conditions.

2. Describing DEM measurement error

Typically, analysis of the spatial pattern of errors in DEMs focuses
on the difference between the measured values and some ‘true’ value
that is perceived as more accurate (Smith and Vericat, 2015; Kyriakidis
et al., 1999); i.e. where the reference data used for validation is con-
sidered as the ‘truth’. In this paper, we focus on measurement bias, the
mean difference between measured values and some ‘true’ value, to
describe the pattern of error. Bias can be used to describe the presence
of systematic error, which is the tendency of measurements to, on
average, under- or overestimate the ‘true’ values. Additionally, we de-
fine precision of a measurement as the variability in values between
multiple observations. It can be used to describe random error, and can
be assessed in terms of reproducibility or repeatability.

Most SFM-MVS studies in the geosciences have focused on re-
producibility (Clapuyt et al., 2016; Smith and Vericat, 2015). Re-
producibility can be defined as how measurements vary using different
sensors under different conditions, including different periods (Bartlett
and Frost, 2008). These studies are popular for good reasons: they seek
to optimize experimental parameters to produce the best 3D re-
construction results for a variety of sensor and field conditions (e.g.,
Clapuyt et al., 2016); they also demonstrate the capability of the SFM-
MVS approach to produce high resolution and high quality DEMs sui-
table for studies of Earth surface processes and landforms. There are
many factors that affect elevation modeling results, some examples of
reproducibility include comparisons of: SFM MVS pipelines from dif-
ferent software (Smith et al., 2015; Micheletti et al., 2015a; Ouédraogo
et al., 2014; Stumpf et al., 2015; Dandois et al., 2015); sensors/cameras
(Micheletti et al., 2015a; Dandois et al., 2015), camera settings and
calibration (Clapuyt et al., 2016; James et al., 2017b; Harwin et al.,
2015), flight plans (Smith and Vericat, 2015; James and Robson, 2014;
Dandois et al., 2015), the distribution of ground control (Tonkin and
Midgley, 2016; James et al., 2017a; Clapuyt et al., 2016), different field
sites (Dandois et al., 2015; Nolan et al., 2015; Harder et al., 2016;
Bühler et al., 2016); variable field site conditions (Dandois et al., 2015;
Harder et al., 2016; Harwin and Lucieer, 2012; Westoby et al., 2012)
and georeferencing approaches (Carbonneau and Dietrich, 2017).

Repeatability can be defined as how a measure varies for a parti-
cular sensor and involves conducting repeat measurements of the same
object with the same sensor under similar conditions within a short
period (Bartlett and Frost, 2008). That is, repeatability investigates
what would be the expected variation in elevation measurement for a
given UAV survey for a given camera, survey design and field site

conditions. Using repeat observations for determining measurement
precision is a well-known approach for assessing measurement un-
certainty, but has yet to be commonly applied for DEMs, in particular
for SFM-MVS DEMs. This study focuses on repeatability.

Throughout this section, we define several models that can be used
to describe the distribution of DEM error. Each error model is based on
a scenario that depends on the data collected or available for error
analysis. These scenarios are, (i.) single DEM from an aerial survey with
surveyed check points or a reference DEM; (ii.) multiple DEMs from
repeat aerial surveys with surveyed check points; or (iii.) multiple
DEMs from repeat aerial surveys with a reference DEM. The error
models mathematically characterize and define the error components
for each of these different situations and subsequently define estimators
for the bias and precision. In doing so, we present characterizations of
bias and precision that are allowed to vary spatially depending on the
surveying scenario and thus data availability. The error models pre-
sented here are not meant to be a comprehensive list; we acknowledge
that there are other approaches to error analysis of SFM-MVS DEMs
such as those based on simulations (James et al., 2017b). Instead, we
present the most commonly applied error model (i.e., i.) and demon-
strate how we can afford more complex descriptions of error by pro-
viding additional repeat survey data (i.e., ii. and iii.).

The elevation value y(x) of a surface (e.g. a SFM-MVS derived DEM)
within domain D can be described as,

= +y x z x e x( ) ( ) ( ) (1)

where z(x) is the ‘true’ elevation value and e(x) is the measurement
error at location x. Typically, e(x) is determined by comparing y(x) to a
reference data set to represent z(x) at a higher accuracy, where the
number n of reference elevations (z(x))x∈D, i=1, …, n can either be a
set of check points, for example from a Global Navigation Satellite
System (GNSS) survey, or elevations from another DEM (Kyriakidis
et al., 1999).

2.1. Single DEM with check points or a reference DEM

The most common approach for describing measurement error in
DEMs, both classically and within SFM-MVS studies, is the use of global
statistical measures, such as root mean square error (RSME), mean error
and the standard deviation (SD) of error at check point locations (Fisher
and Tate, 2006; Wilson, 2010; Smith et al., 2015). These statistics de-
scribe the overall measurement error of a DEM and, given a spatially
distributed set of reference data, can provide a visualization of spatial
error patterns. Usually, these statistics are calculated for the scenario
where a close-range aerial survey is used to produce a single SFM-MVS
DEM to measure the elevations of a surface, and some sort of reference
data has been collected.

We describe the measurement error e(x) in this situation by de-
composing it into a constant bias or systematic error, μ, and a random
error, ε(x):

= +e x μ ε x( ) ( ). (2)

The random error in this conceptual model has a mean of 0 and
standard deviation σ, and it is often observed or assumed to be normally
distributed (James et al., 2017b; Kyriakidis et al., 1999; Fisher and
Tate, 2006).

The standard deviation, or precision, is estimated as the standard
deviation σ of measurement error, or the square root of the measure-
ment error variance σ2,
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where e(xi) is the difference between the elevation surface and re-
ference data, y(xi)− z(xi), at locations for xi∈D, i=1, …, n. That is,
the measurement precision is based on an estimate of the standard
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