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A B S T R A C T

Accurate classification of plant functional types (PFTs) reduces the uncertainty in global biomass and carbon
estimates. Airborne small-footprint waveform lidar data are increasingly used for vegetation classification and
above-ground carbon estimates at a range of spatial scales in woody or homogeneous grass and savanna eco-
systems. However, a gap remains in understanding how waveform features represent and ultimately can be used
to constrain the PFTs in heterogeneous semi-arid ecosystems. This study evaluates lidar waveform features and
classification performance of six major PFTs, including shrubs and trees, along with bare ground in the Reynolds
Creek Experimental Watershed, Idaho, USA. Waveform lidar data were obtained with the NASA Airborne Snow
Observatory (ASO). From these data we derived waveform features at two spatial scales (1 m and 10m rasters)
by applying a Gaussian decomposition and a frequency-domain deconvolution. An ensemble random forest
algorithm was used to assess classification performance and to select the most important waveform features.
Classification models developed with the 10m waveform features outperformed those at 1m (Kappa
(κ)= 0.81–0.86 vs. 0.60–0.70, respectively). At 1m resolution, lidar height features improved the PFT classi-
fication accuracy by 10% compared to the analysis without these features. However, at 10m resolution, the
inclusion of lidar derived heights with other waveform features decreased the PFT classification performance by
4%. Pulse width, rise time, percent energy, differential target cross section, and radiometrically calibrated
backscatter coefficient were the most important waveform features at both spatial scales. A significant finding is
that bare ground was clearly differentiated from shrubs using pulse width. Though the overall accuracy ranges
between 0.72 and 0.89 across spatial scales, the two shrub PFTs showed 0.45–0.87 individual classification
success at 1m, while bare ground and tree PFTs showed high (0.72–1.0) classification accuracy at 10m. We
conclude that small-footprint waveform features can be used to characterize the heterogeneous vegetation in this
and similar semi-arid ecosystems at high spatial resolution. Furthermore, waveform features such as pulse width
can be used to constrain the uncertainty of terrain modeling in environments where vegetation and bare ground
lidar returns are close in time and space. The dependency on spatial resolution plays a critical role in classifi-
cation performance in tree-shrub co-dominant ecosystems.

1. Introduction

Climate and human driven disturbances in dryland ecosystems have
adverse effects on biodiversity, ecosystem services, carbon storage, and
desertification (Ahlstrom et al., 2015; Poulter et al., 2011). Further-
more, aridity in drylands is expected to increase in the future, causing

expansion of land degradation and desertification (Huang et al., 2017).
Ultimately, changes in the abundance and distribution of plant func-
tional types (PFTs) in drylands can alter productivity and the capacity
of these lands for carbon storage (Chen et al., 2017). Thus, PFTs are
important indicators for monitoring the state of an ecosystem, as well as
its resistance and resilience to climate and human driven disturbances
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(Lavorel et al., 1997; Poulter et al., 2015; Schimel et al., 2013). PFTs are
frequently used as inputs for vegetation dynamics and earth system
models (Krinner et al., 2005; Sitch et al., 2003; Wullschleger et al.,
2014). However, uncertainty in PFTs, especially in dryland ecosystems
between shrub, grass and forest classes reduces the accuracy of these
models (Hartley et al., 2017). Hence, improved methods to capture the
structure and function of PFTs in drylands are needed to accurately
model carbon storage flux in these systems.

Due to its ability to capture three dimensional structure and some
radiometric properties, light detection and ranging (lidar) is used to
derive vegetation heights and digital terrain models, as well as to
classify vegetation species, function and structure (Dalponte and
Coomes, 2016). These products are further used for automated forest
inventory estimates such as biomass and carbon stocks (Coomes et al.,
2017; Dalponte and Coomes, 2016; Ene et al., 2017), as well as for
ecosystem demography models (Thomas et al., 2008) to estimate
carbon flux. Waveform lidar, which digitizes the total amount of lidar
return energy at high vertical resolution (~1 ns= 15 cm), provides
potential species-specific information about the illuminated target
(Hancock et al., 2015; Hancock et al., 2011; Roncat et al., 2011;
Wagner et al., 2006). The shape of the returning waveform results from
a convolution of the temporal shape of the emitted pulse and system
impulse (together called “system response/waveform”) with the target
cross-section. Thus the backscattered waveform contains target char-
acteristics such as size, orientation, and spatial arrangement, as well as
radiometric characteristics of individual vegetation species (Hovi and
Korpela, 2014; Korpela et al., 2013; Wagner et al., 2006).

Each echo in a waveform signal corresponds to an individual re-
flection target or set of targets. Thus, an echo can be used to detect
individual target properties, the position and the orientation in 3D
space. Through optimal waveform processing techniques, such as the
commonly used Gaussian decomposition (Wagner et al., 2006), linear
fitting or other asymmetric fitting techniques (Jutzi and Stilla, 2006;
Mallet et al., 2010; Roncat et al., 2011; Wu et al., 2011), numerous
features can be derived from backscattered waveforms. Some of these
additional waveform features and their biophysical relationships to the
target are summarized in Table 1.

However, many of these waveform features (e.g. amplitude, pulse
width, and backscatter cross section) are sensitive to system parameters
such as incident angle, range and flying height (Abed et al., 2012; Hovi
and Korpela, 2014; Lin, 2015; Wagner, 2010). Thus, it is necessary to
correct the influence of these system parameters on waveform features
prior to application (Bruggisser et al., 2017; Fieber et al., 2013; Wagner,
2010).

Waveform features and height information have been used to esti-
mate vegetation structure as well as plant functional type and structural
traits at both fine (< 2m) and regional spatial scales (Alexander et al.,
2015; Wagner et al., 2008). Classification of plant functional types and
individual species in tree dominant ecosystems show great

improvement of classification accuracy with inclusion of one or several
of these waveform features (Hovi et al., 2016). The pulse width and
location characterize the vegetation components along the waveform
path and have been used to classify deciduous and coniferous species
(Reitberger et al., 2008; Yao et al., 2012). Wagner et al. (2008) show
that the scattering shape of backscattered signals can be used to sepa-
rate vegetation from no vegetation with an accuracy up to 89%. Pulse
widths can be used to classify vegetation in different patch conditions
such as within varying soil roughness, understory and density (Hollaus
et al., 2011). Vaughn et al. (2012) show that inclusion of frequency-
domain full-waveform lidar features improves a five-species classifica-
tion accuracy by 6% over discrete-return lidar alone, from 79 to 85%.

Numerous studies using combined features from discrete and wa-
veform datasets have improved classification performance of tree and
grass species (Heinzel and Koch, 2011; Neuenschwander et al., 2009;
Vaughn et al., 2012). Backscatter cross-section alone can be used to
distinguish ground, grass, and trees from each other (Fieber et al., 2013;
Wagner et al., 2008). Further, lidar-derived height and energy related
features have been used to delineate individual trees in object-based
image analysis (OBIA) studies as the OBIA eliminates the discontinuity
that is common in pixel-based classification (Zahidi et al., 2015).

In most of these studies, lidar-derived heights or height-based pro-
ducts such as canopy height models (CHM) and digital elevation models
(DEM) play a critical role in delineation of individual tree crowns as
well as in differentiating vegetation from bare ground (Hovi et al.,
2016). Some vegetation studies use lidar returns above a certain height
threshold (e.g. ~2m above ground) for classification (Ene et al., 2017;
Zahidi et al., 2015). However, in low-height vegetation, lidar does not
return a separate energy peak unless the vegetation height is above the
range resolution of the lidar system. Thus, bare ground lidar responses
are typically mixed with low-height vegetation such as shrubs and
grasses. This causes difficulties to measure the fractions of bare ground
and vegetation, an important criterion for plant functional distribution
mapping in dryland ecosystems (Hartley et al., 2017). Numerous stu-
dies in low-height ecosystems have documented that lidar heights un-
derestimate vegetation heights (e.g. Streutker and Glenn, 2006). Si-
milar underestimations and uncertainties appear in almost all studies
which use lidar-based height features to model low-stature vegetated
ecosystems across the world, which significantly affects regional eco-
system modeling and upscaling attempts (Hopkinson et al., 2005;
Rango et al., 2000). Fortunately, waveform lidar is sensitive to the
occurrence of low vegetation, where echoes often have a wider pulse
than echoes from the bare ground. Although this limits the use of tra-
ditional lidar heights to separate ground from vegetation, the derivation
of additional waveform features provides the opportunity to uncover
hidden vegetation characteristics in the datasets.

In addition, vegetation distributions in many semi-arid ecosystems
are topographically controlled and low-height vegetation often coexists
with taller tree communities. The topographic and species complexity

Table 1
Summary of waveform features derived from individual waveforms and their biophysical relationships to the target.

Attribute Biophysical relationship Reference

Pulse width Surface roughness and slope Fieber et al., 2013
Amplitude Optical response of the target to the emitted lidar wavelength Fieber et al., 2013
Backscatter cross-section Horizontal scattered cross-section of the target with respect to the deployed system

wavelength, range, and incident angle
Wagner et al., 2006

Backscatter coefficient The area-normalized backscatter cross-section corrected for incidence angle. A
function of the target reflectance.

Wagner et al., 2008; Wagner,
2010

Differential target cross section Laser system independent true target profile Roncat et al., 2011
Rise time Vertical structural distribution of target (e.g. in trees the vertical distribution of

leaves and branches)
Ranson and Sun, 2000

Number of echoes Vertical distribution and height of target Heinzel and Koch, 2011
Height/height variability Vertical distribution of target and its separation from ground Fieber et al., 2013
Secondary explanatory features derived from any of the

above parameters
N/A Heinzel and Koch, 2011
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