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Spatial and temporal satellite image fusion (STIF) has provided a feasible alternative for generating imagery with
both high spatial and temporal resolution, thus expanding the applications of existing satellite sensors. However,
a critical challenge confronting the further development of STIF is to systematically and robustly address
complex land surface changes, which include land cover changes without shape changes (e.g., crop rotation) and
land cover changes with shape changes (e.g., urban expansion), in addition to conventional land surface changes
(e.g., phenological changes of vegetation). This paper presents the Robust Adaptive Spatial and Temporal Fusion
Model (RASTFM) to tackle this challenge with one prior pair of MODIS-Landsat images. In RASTFM, land surface
changes are reorganized into non-shape changes (including phenological changes and land cover changes
without shape changes) and shape changes (i.e., land cover changes with shape changes), which are handled
differently. However, both non-shape changes and shape changes are predicted through a Non-Local Linear
Regression (NL-LR) of the subject pixel's similar neighbors. A regression based high-pass modulation is also
performed as a post-processing step to improve both the spatial details and spectral fidelity of the predicted
Landsat image. Unlike other STIF models (e.g., the Spatial and Temporal Adaptive Reflectance Fusion Model,
STARFM), RASTFM can find similar neighboring pixels more precisely through a non-local searching strategy
and derives the weights of similar neighbors more rigorously via a linear regression model. As both non-shape
and shape changes are treated based on the regression of similar neighboring pixels, the land surface changes are
processed in a unified manner. Experiments that use one simulated and three actual MODIS-Landsat datasets
featured by different types of land surface changes were conducted to demonstrate the performance of RASTFM.
Comparisons with the state-of-the-art STIF models, including weighted function, unmixing and dictionary-
learning methods, show that NL-LR based RASTFM can capture the land surface changes in various landscapes
more accurately and robustly in a unified manner, thereby facilitating the continuous and detailed monitoring of
complex and diverse land surface dynamics.

1. Introduction

High spatial resolution images with frequent coverage are of great
significance for many applications at the global or regional scale, such
as land cover/land use mapping and change detection (Acerbi-Junior
et al., 2006; Roy et al., 2014; Townshend et al., 2012; Xian and Crane,
2005), disturbance events mapping (Hilker et al., 2009), quantitative
crop growth monitoring (Singh, 2011), vegetation phenological change
monitoring (Bhandari et al., 2012), detailed seasonal variation re-
construction of biophysical parameters (Zhang et al., 2014), land sur-
face temperature monitoring (Weng et al., 2014), and mapping daily
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evapotranspiration at field or continental scales (Cammalleri et al.,
2013; Kustas et al., 2011). To date, although Earth Observation (EO)
has made great breakthroughs in obtaining remote sensing data with
high spatial and temporal resolution from multi-platform satellites,
such as the new launch of the Satellite Pour 1'Observation de la Terre
(SPOT), Landsat, Geostationary Operational Environmental Satellites
(GOES), Meteosat Second Generation (MSG), Multifunctional Transport
Satellites (MTSAT), Sentinal-2 satellites, and the development of the
China High-resolution Earth Observation System (CHEOS), current sa-
tellite sensors still have to compromise between spatial and temporal
resolution because of hardware technology limitations and budget
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constraints (Gevaert and Garcia-Haro, 2015; Huang and Song, 2012;
Song and Huang, 2013; Zhu et al., 2010; Zhu et al., 2016). Moreover,
many historical EO data entail the use of STIF for studies on long-term
and detailed land surface dynamics that require dense historical time-
series satellite images with high spatial resolution. Hence, STIF is a
feasible and cost-effective method of obtaining remote sensing images
with both high spatial and temporal resolution simultaneously to pro-
mote applications of current EO data. (Gao et al., 2006; Huang and
Song, 2012; Zhu et al., 2016).

Image fusion can integrate multi-source images to obtain more in-
formation than what can be derived from a single data source (Van
Genderen and Pohl, 1994). This process can be categorized into three
processing levels: pixel-level, feature-level and decision-level (Polh and
Van Genderen, 1998). Pixel-level image fusion methods are usually
very efficient and easy to implement but highly sensitive to mis-regis-
tration (Li et al., 2008); however, feature- and decision-level methods
have much stronger tolerance to the imperfection of image registration
accuracy (Karali et al., 2015). The primary goal of STIF is to predict
unavailable or missing high-spatial-resolution (hereafter referred to as
“high-resolution”) images, which is caused by the compromise between
spatial and temporal resolution, cloud cover, or other interference
factors, such as the SLC-off problem of Landsat-7 Enhanced Thematic
Mapper Plus (ETM +), by capturing land surface temporal changes from
low-spatial-resolution (hereafter referred to as “low-resolution”) images
but with frequent coverage (e.g., MODerate resolution Imaging Spec-
troradiometer (MODIS) imagery) as much as possible and by taking full
advantage of the spatial details of prior high-resolution images but with
less frequent coverage (e.g., Landsat imagery). The combination of
existing satellite observations and fused data can achieve land surface
dynamics monitoring at higher spatiotemporal resolution that is here-
tofore inaccessible (Gao et al., 2015). To this end, a good STIF method
should reconstruct spatial details, reduce spectral distortion, and ex-
clude the effects of possible disturbances. Although STIF can produce
synthetic satellite observations with high spatiotemporal resolution, it
still relies on the availability of actual observations (Gao et al., 2015).
Hence, STIF is mostly useful for bridging the gaps between spatial and
temporal resolution of satellite sensors, but cannot replace actual sa-
tellite missions (Gao et al., 2015).

To date, many STIF algorithms have been devised to predict dif-
ferent types of land surface temporal changes, including phenological
changes and land cover changes. A general comparison in terms of
prediction ability and processing level among several representative
STIF methods is shown in Table 1. As summarized by Zhu et al. (2016),
most of the weighted function based and unmixing based STIF methods
can only predict phenological changes by processing at the pixel level,
while all of the dictionary-pair learning methods can capture

Table 1
A general comparison among several representative STIF methods.
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phenological and land cover changes together by processing at the
feature level.

Among the STIF methods featuring only the ability to predict phe-
nological changes, the Spatial and Temporal Adaptive Reflectance
Fusion Model (STARFM), proposed by Gao et al. (2006), is the most
popular method within the remote sensing community (Emelyanova
et al., 2013) and performs well in preserving the spatial details of prior
high-resolution images, such as Landsat images (Singh, 2011). Several
improved models based on STARFM have since been developed, such as
the Spatial Temporal Adaptive Algorithm for mapping Reflectance
Change (STAARCH) (Hilker et al., 2009), the Enhanced STARFM (ES-
TARFM) (Zhu et al., 2010), the operational STARFM data fusion fra-
mework (Wang et al., 2014), and the spatio-temporal integrated tem-
perature fusion model (STITFM) (Wu et al., 2015). Roy et al. (2008)
presented a semi-physical fusion approach that considered the direc-
tional dependence of surface reflectance described by the Bi-directional
Reflectance Distribution Function (BRDF) using the MODIS BRDF/Al-
bedo product. Zurita-Milla et al. (2009) proposed a constrained un-
mixing method to produce synthetic image series with Landsat-like
spatial, and MERIS-like (MEdium Resolution Imaging Spectrometer)
spectral and temporal resolution. Wu et al. (2012) developed the Spa-
tial Temporal Data Fusion Approach (STDFA) by performing unmixing
at every prior time point to obtain the corresponding surface reflectance
changes and then calculating the final predictions based on these
changes and a prior high spatial resolution image. Huang et al. (2013)
proposed a unified fusion method based on Bayesian data fusion theory
that aims to perform spatiotemporal fusion and spatial-spectral fusion
in the same process. Amorés-Lépez et al. (2013) added a regularization
term to the unmixing cost function to prevent the spectral shape of the
derived endmembers from excessively differing from the predefined
endmembers spectra. Gevaert and Garcia-Haro (2015) proposed the
Spatial and Temporal Reflectance Unmixing model (STRUM) by con-
ducting unmixing on low-resolution images and introducing Bayesian
theory to constrain the estimated endmembers. STIF methods that
consider using intermediate spatial resolution data as auxiliary data to
improve the prediction precision of STIF and reduce the uncertainty in
predicting high-resolution images on a desired date have also been
proposed, e.g., using 15 m Landsat panchromatic images in the fusion of
30m Landsat and 10 m Sentinel-2 images (Wang et al., 2017a) and
250 m MODIS images in the fusion of 500 m MODIS and 30 m Landsat
images (Wang et al., 2017b). Moreover, Wang and Atkinson (2017)
designed a Fit-FC method to fuse the spatial and temporal resolution
from Sentinel-2 Multispectral Imager (MSI) and Sentinel-3 Ocean and
Land Color Instrument (OLCI) sensors to create nearly daily Sentinel-2
images.

For STIF methods enabling the prediction of both phenological and

STIF method

Phenological change

Land cover change Processing level

STARFM (Gao et al., 2006)

Semi-physical model (Roy et al., 2008)
STAARCH (Hilker et al., 2009)

Constrained unmixing (Zurita-Milla et al., 2009)
ESTARFM (Zhu et al., 2010)

STDFA (Wu et al., 2012)

Regularized unmixing (Amorés-Lopez et al., 2013)
Unified fusion (Huang et al., 2013)

Operational STARFM (Wang et al., 2014)
STRUM (Gevaert and Garcia-Haro, 2015)
SPSTFM (Huang and Song, 2012)

One-pair learning (Song and Huang, 2013)
U-STFM (Huang and Zhang, 2014)

FSDAF (Zhu et al., 2016)

HSTAFM (Chen et al., 2016)

Fit-FC (Wang and Atkinson, 2017)

B T S

N/A Pixel-level
N/A Pixel-level
N/A Pixel-level
N/A Pixel-level
N/A Pixel-level
N/A Pixel-level
N/A Pixel-level
N/A Pixel-level
N/A Pixel-level
N/A Pixel-level

N Feature-level
v Feature-level
v Pixel-level

v Pixel-level

v Pixel- and feature-level
v Pixel-level
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