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A B S T R A C T

Maps that categorise the landscape into discrete units are a cornerstone of many scientific, management and
conservation activities. The accuracy of these maps is often the primary piece of information used to make
decisions about the mapping process or judge the quality of the final map. Variance is critical information when
considering map accuracy, yet commonly reported accuracy metrics often do not provide that information.
Various resampling frameworks have been proposed and shown to reconcile this issue, but have had limited
uptake. In this paper, we compare the traditional approach of a single split of data into a training set (for
classification) and test set (for accuracy assessment), to a resampling framework where the classification and
accuracy assessment are repeated many times. Using a relatively simple vegetation mapping example and two
common classifiers (maximum likelihood and random forest), we compare variance in mapped area estimates
and accuracy assessment metrics (overall accuracy, kappa, user, producer, entropy, purity, quantity/allocation
disagreement). Input field data points were repeatedly split into training and test sets via bootstrapping, Monte
Carlo cross-validation (67:33 and 80:20 split ratios) and k-fold (5-fold) cross-validation. Additionally, within the
cross-validation, we tested four designs: simple random, block hold-out, stratification by class, and stratification
by both class and space. A classification was performed for every split of every methodological combination
(100’s iterations each), creating sampling distributions for the mapped area of each class and the accuracy
metrics. We found that regardless of resampling design, a single split of data into training and test sets results in a
large variance in estimates of accuracy and mapped area. In the worst case, overall accuracy varied between
~40–80% in one resampling design, due only to random variation in partitioning into training and test sets. On
the other hand, we found that all resampling procedures provided accurate estimates of error, and that they can
also provide confidence intervals that are informative about the performance and uncertainty of the classifier.
Importantly, we show that these confidence intervals commonly encompassed the magnitudes of increase or
decrease in accuracy that are often cited in literature as justification for methodological or sampling design
choices. We also show how a resampling approach enables generation of spatially continuous maps of classifi-
cation uncertainty. Based on our results, we make recommendations about which resampling design to use and
how it could be implemented. We also provide a fully worked mapping example, which includes traditional
inference of uncertainty from the error matrix and provides examples for presenting the final map and its ac-
curacy.

1. Introduction

Categorical maps (e.g. land cover, land use, vegetation community
type, soil type etc.) are still one of the fundamental underlying in-
formation sources for decision making for many scientific, conserva-
tion, and management activities. There is a range of strategies for

making these maps and assessing their accuracy. Remote sensing ap-
proaches are common, falling into the general category of “image
classification”. Often, these approaches involve using some kind of
modelling approach to map, from image data, a set of known classes
using known cases of those classes for training. This contrasts with
unsupervised approaches, which do not use operator-controlled
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training information. Informative, transparent and statistically robust
presentation of the accuracy and reliability of such maps is critical to
enable their use in scientific, legal and economic decisions (Foody
2004, 2015; Olofsson et al. 2014).

Greater accuracy is of course desirable, but just as importantly it is
critical that informative estimates of accuracy and uncertainty are
provided with a map. This is particularly true when accuracy values
directly inform a decision-making process. Accuracy is typically re-
ported in terms of a predictive accuracy metric describing the agree-
ment between mapped values and the known values for those cases (i.e.
‘overall accuracy’). Most other common metrics are variations of the
concept of overall accuracy. For example, metrics for individual classes
based on commission and omission error are common. Kappa metrics,
which correct for chance agreement, are also widely reported, though
they have recently been criticised for their assumptions about the ac-
curacy of a “random” classification (e.g. Pontius & Millones 2011). Use
of overall accuracy itself has also been questioned for its relevance
when used across different mapping scenarios (e.g. Foody 2004;
Stehman et al. 2008). The other statistics commonly estimated from
maps are mapped area or estimates of population parameters. Likewise,
it is important to understand the accuracy and uncertainty in these
values, and there has been much research on this topic also (e.g.
McRoberts et al. 2011; McRoberts 2014).

The sampling design for acquiring input data, and the type of model
used for mapping, varies widely and influences the accuracy of re-
sultant maps (Stehman et al. 2008; Zhen et al. 2013). The sampling
design can vary, both in terms of how the underlying data are collected
and how they are partitioned to train and test the mapping procedure
(e.g. Foody 2002; Zhen et al. 2013; Olofsson et al. 2014). Modelling
approaches range from simple methods, such as maximum likelihood
and nearest neighbourhood classifiers to more complex methods such as
random forests, support vector machines and boosted regression trees
(e.g. Brenning 2009).

For data partitioning, the most common strategy is to choose some
ratio to split the data into training and test sets; the training set informs
the model, and a single test set is held out to calculate accuracy metrics
post hoc. The split ratio varies, but the training sample commonly
comprises 50–80% of the full dataset. The training set may be selected
based on one of several alternative strategies, including: simple random
sample, or a random sample stratified by class, by class and spatial
location, or split spatially by blocks or circles (Olofsson et al. 2014).
Split ratio and sampling design can also affect both the map and the
estimate of its accuracy (Zhen et al. 2013). Regardless, the use of a
single split of data into training and test sets may provide misleading
information about estimates and their uncertainty. This is because any
one split could be an unrepresentative sample of the data, so the user
has no idea how close the class area or accuracy estimates are to the
truth.

The purpose of accuracy assessment is to estimate the error and
uncertainty of the output classification, to either choose the most ap-
propriate mapping procedure or to inform interpretation of the output.
This information is used in combination with estimates of population
parameters (and their uncertainty). Much of the focus on development
of accuracy metrics and best practice in model evaluation has been to
provide more meaningful estimates of map accuracy and population
parameters (Olofsson et al. 2014). This research has concluded that
associated measures of uncertainty are critical for use and interpreta-
tion (McRoberts 2014; Olofsson et al. 2014). Additionally, better sci-
entific, conservation and management outcomes result when knowl-
edge of uncertainty is incorporated into decisions (Burgman et al. 2005;
Guisan et al. 2013; Foody 2015). Indeed, for many applications, accu-
racy estimates explicitly inform decision-making, and yet it is still not
common place to include estimates of both accuracy and uncertainty
along with maps. This is despite the growing range of methods for doing
so.

Resampling procedures such as bootstrapping and cross-validation

can be used to estimate map accuracy and associated uncertainty (i.e.
variance or confidence intervals) in a relatively unbiased manner (Efron
and Tibshirani 1997). These methods are commonly implemented for
predicting geographic distributions, for example for species or ecolo-
gical communities (Roberts et al. 2017). They can also be effective in
remote sensing frameworks and have been employed in various ways,
often with a focus on estimation of mapped areas or population para-
meters (e.g. Weber and Langille 2007; Brenning 2009; McRoberts et al.
2011; Champagne et al. 2014; Gallaun et al. 2015; Hsiao and Cheng
2016). However, resampling approaches remain uncommon for asses-
sing mapping accuracy and its uncertainty (e.g. standard error/con-
fidence intervals). The premise is quite simple; instead of using a single
split of the data to produce the accuracy metric, the splitting is repeated
multiple times using a chosen resampling framework. Both the map and
accuracy results are produced for every iteration, giving a sample dis-
tribution of map and accuracy results. This sampling distribution can
then be summarised to provide an empirical estimate of accuracy along
with its uncertainty.

Independent samples and subsequent construction of the error ma-
trix have been consistently viewed as the desirable way to estimate
predictive performance. Indeed, this construct has an important role,
however, truly independent samples are rarely available. Resampling
can provide some of the advantages of an independent sample and it
provides accurate estimates along with meaningful information about
variance. Alternatives to repeated classifications have been shown to be
useful (e.g. McKenzie et al. 1996; Hess and Bay 1997; Gallaun et al.
2015), and have been advocated for some time now (e.g. Foody 2004).
These methods have often been motivated by reducing computational
cost, but modern classification methods and more powerful computers
mean that resampling frameworks are now tractable for most users.
However, there are no comprehensive comparisons of different re-
sampling strategies for categorical mapping and accuracy assessment,
nor are there easy to use workflows in common image processing and
GIS software packages for developing and applying resampling frame-
works.

In this paper, we compared resampling approaches to the traditional
single-split, train and hold-out test set approach. Our primary objective
was to compare the way mapping accuracy is assessed, but we also
compared the estimated areas of each mapping class. We tested whe-
ther the accuracy and area estimated depended on the design of the test
and training sets, that is, whether bootstrapping or cross-validation
(Monte Carlo or k-fold) was used, if and how stratification was used
(simple random, thematic and/or spatial stratification), and the ratio at
which samples were partitioned into training and test sets. We also
tested several aspects of the classification framework, including the
classification model (maximum likelihood and random forest) and the
accuracy assessment metric used (overall accuracy, kappa, user/pro-
ducer accuracy, entropy, purity and quantity/allocation disagreement).
Using a worked example, we compared a resampling approach to more
traditional approaches based on a single hold-out test set for validation.
The data used in this study included a dense set of field observations of
vegetation communities from south east Australia, and ADS40 high
resolution (40 cm) multispectral imagery. We show that all resampling
approaches gave consistent measures of accuracy, as well as providing
useful estimates of uncertainty in both class area and accuracy. We
discuss the limitations of commonly used approaches in this context,
and identify practical options for users seeking to improve the robust-
ness of maps and their accuracy assessments by implementing a re-
sampling based mapping approach.

2. Methods

2.1. Field and image data

The study area (~50 km2) is within the O'Hares Creek catchment in
Dharawal National Park and Nature Reserve, nearby Sydney, Australia.

M.B. Lyons et al. Remote Sensing of Environment 208 (2018) 145–153

146



Download English Version:

https://daneshyari.com/en/article/8866698

Download Persian Version:

https://daneshyari.com/article/8866698

Daneshyari.com

https://daneshyari.com/en/article/8866698
https://daneshyari.com/article/8866698
https://daneshyari.com

