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A B S T R A C T

Remote sensing assessment of crop residue cover (fR) and tillage intensity can improve predictions of the en-
vironmental impact of agricultural practices and promote sustainable management. Spectral indices for esti-
mating fR are sensitive to soil and crop residue water contents, therefore the uncertainty of fR estimates increases
when moisture conditions vary. Our goals were to evaluate the robustness of spectral residue indices based on
the shortwave infrared region (SWIR) for estimating fR and to mitigate the uncertainty caused by variable
moisture conditions on fR estimates. Ten fields with center pivot irrigation systems (eight partially irrigated and
two uniformly dry fields) were identified in Worldview-3 satellite imagery acquired for a study site in Maryland
(USA). The fields were mid-irrigation at the time of imagery acquisition, allowing comparison of residue cover
under dry and wet conditions. Fields were subdivided into approximately equal-size wedges within the dry and
wet portions of each field, and the SWIR bands were extracted for each pixel. Two crop residue indices
(Normalized Difference Tillage Index (NDTI); Shortwave Infrared Normalized Difference Residue Index (SINDRI)
and a water index (WI) were calculated. Reflectance in each band was moisture-adjusted based on the WI
difference between wet and dry wedges, and updated NDTI and SINDRI were calculated. Finally, the probability
density distributions of fR estimated from the residue indices were calculated for each field. SINDRI was more
robust than NDTI for estimating fR. Moisture corrections of spectral bands reduced the root mean square error of
NDTI fR estimates from 22.7% to 4.7%, and SINDRI fR estimates from 6.0% to 2.2%. The mean and variance of
the probability density distribution of fR estimated from residue indices, before and after moisture correction,
were greatly reduced in the partially irrigated fields, but only slightly in fields with uniform water distribution.
The estimation of fR should be based on SINDRI if appropriate bands are available, but fR can be reliably esti-
mated by combining NDTI with a water content index to mitigate the uncertainty caused by variable moisture
conditions.

1. Introduction

Maintaining crop residues on the soil surface is a key component of
conservation agriculture promoted by the Food and Agriculture
Organization of the United Nations to make more sustainable cropping
systems (FAO, 2015). The soil is often completely covered by crop re-
sidues after harvest, but residue cover decreases as the soil is tilled or
residues are removed for fuel or feed. Crop residue fractional cover (fR)
reduces soil erosion and runoff, and therefore the amount of nutrients
and agrochemicals that reach surface waters (Delgado, 2010). Tillage
intensity is the main management practice that controls fR and a re-
duction in tillage is associated with increasing soil organic matter and

water retention capacity (Hobbs et al., 2008). In addition, tillage in-
tensity is often a key variable in models, such as EPIC (Izaurralde et al.,
2006) and SWAT (Gassman et al., 2007), that predict the overall impact
of agricultural systems on soil organic carbon, greenhouse gas emis-
sions, and water quality. These models require geospatial information
on landscape topography, soil properties, weather and climate, crop
type and management practices, including soil tillage intensity. Ap-
propriate databases exist for all of these requirements except for soil
tillage intensity. Thus, the capability to assess fR and soil tillage in-
tensity can help to improve predictions of the impact of agricultural
practices across landscapes and further promote sustainable manage-
ment of our resources.
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Currently, in selected counties in the U.S., only qualitative in-
formation on crop residue management is available from farmer in-
terviews and road-side surveys (CTIC, 2015). The quantitative standard
used by the U.S. Department of Agriculture-Natural Resources Con-
servation Service (USDA-NRCS), the line-point transect, is impractical
for wide-scale use because of time and human resources constraints
(Corak et al., 1993; Thoma et al., 2004). Only remote sensing has the
potential for monitoring fR over large areas in a timely and cost effec-
tive manner (Zheng et al., 2014).

Early remote sensing methods for assessing fR were often based on
the relatively broad spectral bands of Landsat and similar satellites
(Biard and Baret, 1997). Although these multispectral satellites typi-
cally have only a few relatively broad spectral bands, they provide
global coverage and have been used to assess fR at regional scales (Van
Deventer et al., 1997; Thoma et al., 2004; Sullivan et al., 2008; Zheng
et al., 2012). The Normalized Difference Tillage Index (NDTI) (Van
Deventer et al., 1997) is generally one of the best of the Landsat-based
tillage indices for estimating fR (Table 1). The corresponding bands of
Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic
Mapper (ETM+), Landsat 8 Operational Land Imager (OLI), and Sen-
tinel-2 may be used.

For the Landsat bands, the differences in reflectance of soils and
crop residues are small and the accuracy of estimating fR is often poor
(Serbin et al., 2009; Quemada and Daughtry, 2016). However, in the
2100–2350 nm wavelength region, crop residues have absorption fea-
tures associated with cellulose and lignin that are absent in the spectra
of soils and green vegetation (Kokaly and Clark, 1999). Various spectral
indices based on detecting these absorption features have been pro-
posed (Daughtry, 2001; Serbin et al., 2009), but are not available using
Landsat.

Advanced multispectral imagers, e.g., the Worldview-3 (WV-3) (SIC,
2017) and Advanced Spaceborne Thermal Emission and Reflection
radiometer (ASTER) (Abrams, 2000), include multiple bands in the
cellulose and lignin absorption region. The most robust crop residue
index for these advanced multispectral sensors is the Shortwave In-
frared Normalized Difference Residue Index (SINDRI) (Serbin et al.,
2009), which can be calculated using the SWIR band 6 (2185–2225 nm)
and 7 (2235–2285 nm) of WV-3 (Table 1). These WV-3 bands also
correspond to ASTER bands A6 and A7. However, the ASTER SWIR
sensor is no longer available due to detector failure in April 2008.
Worldview-3 has 3.7-m spatial resolution for the SWIR bands, and is
well suited for studying episodic events, but its narrow swath width is
not suited for mapping large areas in a timely manner.

Water in the crop residues and soils reduces reflectance at all wa-
velengths, attenuates the cellulose and lignin absorption features, and
reduces the contrast between soil and crop residues (Daughtry and
Hunt, 2008; Wang et al., 2013). Thus, the uncertainty of fR estimates
increases as moisture content of the soil and residue increases, and any

method to accurately monitor soil tillage intensity must account for
variations in water content. Quemada and Daughtry (2016) showed
that SINDRI and NDTI accurately estimated fR when moisture condi-
tions were relatively dry (i.e., relative water content (RWC) < 0.25),
but when scene moisture conditions varied from dry to wet the un-
certainty of fR estimates increased. Although SINDRI was more robust
to changes in moisture conditions than NDTI, a multivariate linear
model that used pairs of spectral indices, one for RWC and one for fR,
improved estimates of fR using SINDRI. In contrast, NDTI was very
sensitive to water content and corrections were unreliable when
RWC> 0.25.

In practice, water contents of soils and crop residues often vary
spatially due to minor changes in local topographic relief. Therefore, a
robust protocol is required to estimate fR from indices calculated using
satellite imagery under varying moisture conditions.

Our goal is to propose a method that mitigates the uncertainty
caused by variable moisture conditions on remotely sensed estimates of
crop residue cover. Specific objectives were to 1) evaluate the robust-
ness of SWIR-based spectral residue indices under various moisture
conditions and 2) develop a reliable method to mitigate the uncertainty
caused by variable moisture conditions on estimates of crop residue
cover. To achieve this goal, we compared the dry and wet portions of
partially-irrigated fields that had been captured mid-irrigation by WV-3
imagery, assuming that residue cover was consistent across each field.

2. Material and methods

2.1. Dataset of field satellite images

Space-borne WV-3 images were acquired on 14 May 2015 over a
study site in the Choptank River watershed of eastern Maryland (USA)
(Fig. 1). These images were inspected and determined to be properly
projected and free of clouds over the study site fields, thus no re-pro-
jection or cloud masking were performed. MODTRAN (Spectral Sci-
ences Inc., Burlington, MA, US) was used for atmospheric correction,
producing coefficients for converting image radiance values to surface
reflectance values. R software was used to apply MODTRAN coefficients
to radiance imagery and to output surface reflectance imagery. In-
dividual surface reflectance images were then mosaiced to cover the
region of study using ENVI (Harris Geospatial, Boulder, CO, USA).

On the day of imagery acquisition soils were somewhat dry, and
irrigation was underway on a number of fields. The dataset used in this
paper was composed of 10 fields with full or semi-circular irrigation
pivots identified in the WV-3 images. When the images were acquired
(12:06 Eastern Daylight Time), the irrigation systems in fields 1 to 8
were operating and, as a result, these fields had clearly identifiable
areas with differing water content due to irrigation status (recently ir-
rigated versus not-yet-irrigated). Inside each field, various wet and dry
wedges were differentiated based on visual analysis of the image. For
each of the wedges, the SWIR bands were extracted from each pixel and
the mean and standard error were calculated (Table 2). The 3.7 m re-
solution of WV-3 image was resample to 4 m. The average size of each
wedge was 9433 m2, each pixel represented 16 m2 and, therefore, the
average number of pixels per wedge was 590. The wedge in which each
pivot arm was actively spraying water was deleted, along with various
anomalies such as wheel tracks and shallow drainage ditches.

Fields 9 and 10 had not been recently irrigated and thus had rela-
tively uniform water contents when the WV-3 image was acquired.
They were chosen to provide a measure of uniformity of the indices in
the absence of irrigation. Both fields were subdivided into wedges fol-
lowing the procedure defined for fields 1–8 providing a measure of the
expected spatial variation of WI and fR within a field. The complete
dataset contained 10 fields and 98 wedges. Fig. 1c shows an example of
identified fields.

Table 1
Spectral bands used for the crop residue cover indices SINDRI (Shortwave Infrared
Normalized Difference Residue Index) and NDTI (Normalized Difference Tillage Index)
and the water index (WI).

Banda Wavelengths, nm Equation Reference

Residue index
SWIR6 2185–2225 SINDRI −

+

100 (SWIR6 SWIR7)
SWIR6 SWIR7

Serbin et al., 2009
SWIR7 2235–2285
OLI6 1570–1650 NDTI −

+

OLI6 OLI7
OLI6 OLI7

Van Deventer
et al., 1997OLI7 2110–2290

Water index
SWIR3 1640–1680 WI SWIR3

SWIR5
Quemada and
Daughtry (2016)SWIR5 2145–2185

a SWIR3, SWIR5, SWIR6 and SWIR7 are Worldview-3 bands at the designated wave-
lengths; and OLI6 and OLI7 are Landsat OLI bands simulated with Worldview-3
[OLI6 = average bands (2, 3, 4), OLI7 = average bands (5, 6)].
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