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A B S T R A C T

The trade-off between spatial and temporal resolutions in remote sensing has greatly limited the availability of
concurrently high spatiotemporal land surface temperature (LST) data for wide applications. Although many
efforts have been made to resolve this dilemma, most have difficulties in generating diurnal fine-resolution LSTs
with high spatial details for landscapes with significant heterogeneity and land cover type change. This study
proposes an integrated framework to BLEnd Spatiotemporal Temperatures (termed BLEST) of Landsat, MODIS
and a geostationary satellite (FY-2F) to one hour interval and 100 m resolution, where (1) a linear temperature
mixing model with conversion coefficients is combined to better characterize heterogeneous landscapes and
generate more accurate predictions for small and linear objects; (2) residuals are downscaled by a thin plate
spline interpolator and restored to the primary fine-resolution estimations to include information about land
cover type change; and (3) separate operations at annual and diurnal scales with nonlinear temperature mod-
eling are designed to neutralize the hybrid impacts of large scale gap and land cover type change. BLEST was
tested on both simulated data and actual satellite data at annual, diurnal and combined scales, and evaluations
were conducted with the simulated/actual fine-resolution data, in-situ data, and with three popular fusion
methods, i.e., the spatial and temporal adaptive reflectance fusion model (STARFM), the Enhanced STARFM
(ESTARFM) and the spatiotemporal integrated temperature fusion model (STITFM). Results show higher accu-
racy by BLEST with more spatial details and pronounced temporal evolutions, particularly over heterogeneous
landscapes and changing land cover types. BLEST is proposed to augment the spatiotemporal fusion system and
further support diurnal dynamic studies in land surfaces.

1. Introduction

Land surface temperature (LST) is a crucial variable in surface en-
ergy processes, hydrological balance, and climate change (Li et al.,
2013). It varies significantly in both space and time (Prata et al., 1995).
With the advance of remote sensing, amounts of satellite-derived LST
products have been publicly available for characterizing the spatio-
temporal variations in LST at spatial resolutions of 60 m–10 km and
temporal resolutions of 15 min–26 days (Quan et al., 2014a). However,
due to limitations of techniques and budgets (Zhu et al., 2010), current
instruments have yet been able to provide concurrently high spatial and
temporal resolutions (Zhan et al., 2013), which has greatly constrained
the potential applications of satellite-derived LSTs in various fields. For

example, polar-orbiting satellite sensors (e.g., Landsat TM LST: 120 m
and 16 day resolutions) probably miss the optimal observation time,
particularly for rapidly changing areas, while geostationary satellite
sensors (e.g., MSG SEVIRI LST: 3 km and 15 min resolutions) lose
spatial details over heterogeneous landscapes (Sobrino et al., 2012).

Regarding this issue, various methods aiming for high spatio-
temporal resolutions have been proposed. They can be divided into two
categories: using sole sensor LST or multi-sensor LST pairs. The first
category includes spatial downscaling of geostationary satellite data
and temporal interpolation of polar-orbiting satellite data, while the
second includes endmember unmixing-, sparse representation-, and
weight function- based fusion methods for multi-resolution LST pairs at
different times.
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The spatial downscaling method is to downscale a coarse spatial
resolution, typically for geostationary satellites, by associating with
visible and near-infrared scale factors at a high spatial resolution
(Zakšek and Oštir, 2012; Weng and Fu, 2014a; Sismanidis et al., 2015).
It generally requires measurements of scale factors in the same day
(except for the case that neglects land cover change), which cannot
always be satisfied due to the long revisiting period of the scale factor
sensors. Also, few studies are able to downscale the geostationary sa-
tellite LSTs to a spatial resolution finer than 1 km due to large spatial
scale differences (Kumar et al., 2012). One remarkable exception is the
approach proposed by Bechtel et al. (2012) that incorporates hundreds
of scale factors to downscale SEVIRI LSTs to a resolution of ~100 m.
The results are rather promising, but the spatial variation details are
underperformed mainly because of the regression-based reconstruction.
Moreover, this approach may not be well suited to wide coverage due to
the large auxiliary data requirement and the spatial relationship change
between LST and scale factors. Herein, we mainly focus on downscaling
geostationary satellites considering their high temporal frequencies.
Complete reviews of thermal downscaling for all kinds of satellites can
be found in Zhan et al. (2013) and Chen et al. (2014b).

The temporal interpolation method is to interpolate temporally
discrete observations, typically for polar-orbiting satellites, by asso-
ciating with a diurnal/annual temperature cycle (DTC/ATC) or a sur-
face energy balance model (Duan et al., 2012; Weng and Fu, 2014b). At
a diurnal scale, it generally requires at least four LST observations a
day, which can only be satisfied by a small number of MODIS ob-
servations under clear skies (Quan et al., 2014a), and the spatial re-
solution after interpolation is often unchanged, i.e., 1 km (Duan et al.,
2012). At an annual scale, many details of day-by-day variations are
lost and diurnal LST dynamics are unresolved. It should be mentioned
that Zhan et al. (2016) proposed a method combining spatial down-
scaling and temporal interpolation, i.e., downscaling the DTC and ATC
parameters using scale factors, such as vegetation index and albedo, to
estimate diurnal 250 m-resolution LSTs throughout a year. Never-
theless, problems remain, such as the minimum four-observations/day
requirement and loss of spatial and day-by-day variation details.

The endmember unmixing-based method regards temporal variations
at a coarse spatial resolution as the mixture of component temporal
variations at a fine spatial resolution (Wu et al., 2012; Amorós-López
et al., 2013; Gevaert and García-Haro, 2015; Zhu et al., 2016). The fine-
scale temporal variations are then derived assuming negligible intra-
component variance and constant component fractions. It can be regarded
as an unmixing-based downscaling method (Zhukov et al., 1999) ex-
tended from one sensor and one time to multiple sensors and different
times. Its good performance is highly dependent on accurate fraction/
classification maps (Zhang et al., 2015) which may not always be avail-
able (Zhu et al., 2016), and its spatial pattern reconstruction may be
unsatisfactory in the case of a large scale difference (Quan et al., 2013).

The sparse representation-based method learns the correspondence
between structures within coarse-fine resolution image pairs by means
of sparse representation, and applies that correspondence to the coarse
resolution at another time to predict the fine-resolution values (Aharon
et al., 2006; Huang and Song, 2012; Song and Huang, 2013; Chen et al.,
2016). It can be regarded as a more sophisticated version (accounting
for structural features, including changes in phenology and land cover
types) of regression-based downscaling, where the scale factors are
replaced by the target variable (e.g., LST or LST dictionary), and the
relationship is learned according to patches rather than pixels and ap-
plied to the coarse resolution at a different time. The difficulties of this
method include the physical explanation of the correspondence, strong
reliance on the image extent, good preservation of spatial details at a
large scale difference, and complex model computation (Zhang et al.,
2015; Zhu et al., 2016). Furthermore, neither of the aforementioned
endmember unmixing- and sparse representation- based methods has
been widely tested on LST data and therefore their feasibility for LST
can hardly be asserted.

The weight function-based method has gained popularity since it was
first proposed. The most representative is the spatial and temporal
adaptive reflectance fusion model (i.e., STARFM by Gao et al. (2006)),
which estimates daily Landsat-like reflectance by a weighted sum of re-
flectance changes in similar neighboring pixels assuming scale invariance
of temporal change (Zhang et al., 2015). Regarding its low accuracy over
landscapes with mixed and changing land cover types, Hilker et al. (2009)
proposed a spatial temporal adaptive algorithm for mapping reflectance
change (STAARCH) over vegetated surfaces by detecting changes and
selecting optimal reference images, while Zhu et al. (2010) proposed an
enhanced STARFM (ESTARFM) by combining a linear spectral mixing
model to account for complex surface heterogeneity.

Although the STARFM-like methods were initially designed for re-
flectance, they have proved useful for generating daily Landsat-like thermal
data such as evapotranspiration and LST (Anderson et al., 2012; Kim and
Hogue, 2012; Huang et al., 2013a; Weng et al., 2014; Wu et al., 2015a;
Shen et al., 2016a). The modifications mainly focus on the weight function
design, temporal change modeling or thermal landscape representation to
better restore the spatiotemporal LST patterns. To further compensate for
the inability to generate diurnal Landsat-like LSTs, Wu et al. (2015b) in-
tegrated geostationary satellite LSTs (i.e., SEVIRI and GOES) with Landsat
and MODIS LSTs, termed the spatiotemporal integrated temperature fusion
model (STITFM). However, similarly to STARFM, STITFM experiences
problems with complex surface heterogeneity and land cover type change.

Most methods reported in the literature were developed in-
dependently focusing one type of resolution, while a few studies for-
mulated integrated frameworks for fusing multiple spatio–tempor-
al–spectral resolutions, such as Huang et al. (2013b), Meng et al.
(2015), and Shen et al. (2016b). Nonetheless, they have mainly focused
on optical images and rarely been tested on LST data.

This study aims to integrate the main features and advantages of ex-
isting methods to develop an advanced spatiotemporal fusion model for
LSTs. Specifically, we blend geostationary satellite (i.e., FY-2F), MODIS,
and Landsat thermal observations to obtain diurnal ~100 m-resolution
LSTs; adopt the weight functions to better preserve spatial details; use the
ATC and DTC models to characterize nonlinear temporal patterns; com-
bine a linear temperature mixing model (LTMM) and thin plate spline
(TPS) downscaling (Chen et al., 2014a) to account for the impacts of
landscape heterogeneity and land cover type change; and perform two
(i.e., annual and diurnal) steps to bridge the large scale gap. We term this
integrated framework the BLEnding of Spatiotemporal Temperatures
(BLEST). BLEST is further described in Section 2. It is tested and evaluated
using simulated data, actual satellite data, and filed observations in
comparison with STARFM, ESTARFM, and STITFM (Sections 4 and 5).
Discussion and conclusions are provided in Sections 5 and 6.

2. Method

Before presenting the details of the proposed method (BLEST), im-
portant variables and definitions are provided as follows for con-
venience and clarity.

(I) i (total number of) components
j prediction/central pixel
(K) k (total number of) pixels
(S) s (total number of) similar pixels
F/M/C fine/medium/coarse spatial scale
d/t day of year/time of day
l/n and m subscripts of observation day and prediction day
o/q and p subscripts of observation time and prediction time
T LST
R residual
f/f' component fraction at a medium/coarse spatial scale
v conversion coefficient
w weight
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