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A B S T R A C T

During the last decades, satellite observations have increasingly been used to study the global water cycle over
land. Although their value is now appreciated by the hydrological community, they are still limited by their
uncertainties and their inability to close the water budget. In a previous study, we optimally integrated several
datasets for each component (precipitation, evapotranspiration, storage change and discharge) to close this
budget at a basin scale. Furthermore, an independent and simple calibration of each satellite dataset was de-
signed to reduce the budget residual. In this paper, we extend the calibration procedure to the global scale. Pixels
are first classified into surface types characterized by their NDVI and net precipitation values. We show that the
global calibration transforms the original datasets towards a consensus that is hydrologically more coherent,
with a budget residual reduced by 26%. The calibrated datasets are compared to ground-based observations,
showing an improvement for more than 65% of the sites tested. This opens new perspectives to generate long-
term datasets at global scale based purely on all available satellites observations, which describe all the ter-
restrial water components useful for climate purposes. Beyond the simple calibration presented here, incon-
sistencies among the various satellite datasets can be used as a proxy for satellite observation uncertainties. The
quality of our calibration procedure is constrained by the availability of discharge measurements, and could
therefore be improved in the future, as discharge measurement networks become more extensive.

1. Introduction

Under a changing climate, the global hydrological cycle is expected
to accelerate and intensify (e.g., Trenberth, 1999; Huntington, 2006;
Coumou and Rahmstorf, 2012). Roderick et al. (2014) use a general
modelling framework to understand the response of the water cycle to
global warming, at the pixel scale and over both land and ocean.
However, global satellite datasets able to fully describe the water cycle
to help evaluate such climate models are still a limitation. Although
changes have already been observed on precipitation (e.g., Dai et al.,
2004) and actual evapotranspiration (Zhang et al., 2016b), quantifying
the intensification is a difficult task and no consensus has been reached
by the scientific community. One of the main reasons is the lack of
consistency between datasets that describe the parameters involved in
the hydrological cycle over land, namely the precipitation (P), the ac-
tual evapotranspiration (E), the water storage changes (sum of water
stored in the vegetation, snow, lakes and rivers, soil moisture and
groundwater, ΔS) and the runoff (or river discharge, R). For each
parameter, several global scale datasets have been developed recently,

either from in situ or remote sensing observations or a combination of
both, from hydrological models or from reanalyses. Despite significant
efforts, within the Global Energy and Water Exchanges project
(GEWEX) for instance, large discrepancies between the datasets still
exist due to biases and uncertainties as well as a lack of reference global
datasets that make consensus among the scientific community. As a key
consequence, determining which datasets best describe the hydro-
logical cycle and simultaneously allow the closure of the water budget,
which is achieved by nullifying the budget residual defined by Eq. (1),
is still under investigation (e.g., Azarderakhsh et al., 2011; Tang et al.,
2016).

= − − −G P E R SΔ (1)

Since no dataset can be considered as perfect, many authors pre-
ferred to combine different available datasets within budget closure
experiments (Sheffield et al., 2009; Sahoo et al., 2011; Lorenz et al.,
2014). For instance Pan et al. (2012) and Zhang et al. (2016a) used an
assimilation strategy based on Kalman Filter algorithms to derive a
coherent dataset of the four components (P, E, R and S) over different
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basins around the world, but the method is limited to the basin scale
and cannot be directly extended at the pixel scale, unless Land Surface
Models are used. Rodell et al. (2015) used variational methods to close
the water budget at the global and annual scales.

In previous studies (e.g., Aires, 2014; Pan and Wood, 2006), several
methodologies have been developed to integrate different hydrological
datasets with a budget closure coherency, which consisted of parti-
tioning the budget residual G among the components based on the
uncertainties of the respective datasets. One of the methods described
in Aires (2014) was applied by Munier et al. (2014) over the well-
documented Mississippi basin using satellite datasets for P, E and ΔS
and gauge observations for R. The optimal integration of the several
Earth observation datasets relies on a Simple Weighting (SW) average
and a closure Post-Filtering (PF). The authors showed that it improved
the quality of water budget components when compared to in situ data.
Besides, a Closure Correction Model (CCM) was developed based on the
integrated product, able to correct each dataset independently and to
greatly reduce the budget residual. This CCM calibration provides new
optimized datasets at the pixel scale (not only the basin scale). It is
important to notice that no model was used in this study, which makes
the resulting datasets interesting for model calibration/validation. One
main limitation of the CCM method relies on the datasets availability
and their potentially large and unknown uncertainties. Namely, data-
sets based on satellite observations generally cover the last two dec-
ades, while discharge observations are not available over this time
period for many large basins around the world. Hence, extending the
method to the global scale, in particular on ungauged regions, is not
straightforward.

In the present study, we investigate an original method to extend
the CCM at a global scale with the objectives of 1) developing a co-
herent, pixel wise and global dataset of the four terrestrial water budget
components (precipitation, evapotranspiration, storage change and
discharge) and 2) estimating their biases and uncertainties. To calibrate
the CCM, we considered 11 large basins for which discharge data are
available over the last two decades. The method consists of considering
all the basins as a single one to calibrate the CCM. In order to account
for the various hydroclimatic conditions of the different basins, an
index called Calibration Index for Closure (CIC) is derived from a
combination of net precipitation (P−E) and the Normalized Difference
Vegetation Index (NDVI). The basins are classified among four surface-
type classes based on the CIC and a CCM is calibrated for each class.
These new calibrated CCM can then be used globally, following the
derived CIC classes. The CIC calibration method is evaluated at the
basin scale in terms of budget closure performances, and over sites all
around the world with independent ground-based observations. The
paper is organized as follows: Section 2 presents the datasets and the
considered basins, Section 3 presents the method, results are presented
and discussed in Section 4.

2. Datasets and considered basins

2.1. Satellite-derived datasets

We aim at showing the potential of satellite based datasets to re-
present the hydrological cycle coherently with respect to budget clo-
sure. Consequently, we maximized the use of datasets based on satellite
observations for P, E and ΔS. We considered four precipitation datasets:
the Tropical Rainfall Measuring Mission (TRMM, 3B43 V7) Multi-
Satellite Precipitation Analysis (TMPA), the NOAA CPC Morphing
Technique (CMORPH, V1.0), the Naval Research Laboratory Blended
Technique (NRL) and the Global Precipitation Climatology Project
(GPCP, V2.2). It has to be noticed that the TMPA and GPCP products
have been corrected using in situ gauge observations. For evapo-
transpiration, three products were chosen: Global Land Evaporation
Amsterdam Model (GLEAM, V3.0), MODIS Global Evapotranspiration
Project (MOD16) and NTSG Land Surface Evapotranspiration (NTSG).

The continental water storage variations were estimated using four
products, all of them based on the Gravity Recovery and Climate
Experiment (GRACE, Tapley et al., 2004) but obtained with different
pre- and post-processing: Jet Propulsion Laboratory (JPL), Center for
Space Research (CSR), German Research Centre for Geosciences (GFZ)
and Groupe de Recherche en Géodésie Spatiale (GRGS). Since the
GRACE mission started in 2002, the period considered in this study
covers the period 2002–2010. Details and references of the considered
datasets are given in Table 1. More details can be found in Munier et al.
(2014), including a discussion on their respective uncertainties. Biases
and uncertainties are further discussed in Section 4.2.

All the gridded datasets used in the integration process have been
resampled at a spatial resolution of 1° and averaged at the monthly time
scale.

2.2. Ground-based FLUXNET data

Ground-based observations were used to validate the correction
method over several sites around the world. Precipitation and evapo-
transpiration data were extracted from the FLUXNET2015 dataset
(available at http://fluxnet.fluxdata.org/) that gathers eddy covariance
data acquired and shared by the FLUXNET community. A total of 117
were selected, based on their availability over the period 2002–2010.
These stations are located all around the world and cover a large panel
of hydro-climatic conditions. Similar to the other datasets, data were
resampled at the monthly time scale.

2.3. Considered basins

Since the discharge component is not observed from space, we used
in situ observations extracted from the Global Runoff Data Centre
(GRDC). The availability of discharge data over the last decade was the
limiting point in the choice of the basins used to calibrate the CCM. The
selection of basins is highly restricted by two factors: 1) availability of
discharge data over the period 2002–2010, and 2) size of the basin
compatible with GRACE spatial resolution (greater than 500.000 km2).
Also, basins at high latitudes have been excluded because some pre-
cipitation datasets are not available there. In the GRDC database, we
found 10 basins fulfilling these criteria. Discharge data from the
Murray-Darling Basin Authority (http://www.mdba.gov.au) were also
used to increase the number of basins. Table 2 presents the 11 basins
considered in this study and their main characteristics. For the Amazon,

Table 1
Data sources for the four components and main characteristics (from Munier et al., 2014).

Name Source Period Spatial
resolution

Reference

Precipitation (P)
TMPA Satellite 1998–present 0.25° Huffman et al. (2007)
CMORPH Satellite 1998–present 0.25° Joyce et al. (2004)
NRL Satellite 2003–2010 0.25° Turk et al. (2010)
GPCP Satellite 1979–present 2.5° Adler et al. (2003)
Evapotranspiration (E)
GLEAM Satellite 1980–2011 0.25° Miralles et al. (2011)
MOD16 Satellite 2000–2012 1 km Mu et al. (2007)
NTSG Satellite 1983–2006 8 km Zhang et al. (2010)
Water storage change (ΔS)
CSR Satellite 2002–present Basin http://grace.jpl.nasa.

gov/data/
GFZ Satellite 2002–present Basin http://grace.jpl.nasa.

gov/data/
JPL Satellite 2002–present Basin http://grace.jpl.nasa.

gov/data/
GRGS Satellite 2002–present Basin http://grgs.obs-mip.fr/

grace/
River discharge (R)
GRDC Gauges 1900–present Basin http://www.grdc.sr.unh.

edu/
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