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A B S T R A C T

Reliable representations of global urban extent remain limited, hindering scientific progress across a range of
disciplines that study functionality of sustainable cities. We present an efficient and low-cost machine-learning
approach for pixel-based image classification of built-up areas at a large geographic scale using Landsat data.
Our methodology combines nighttime-lights data and Landsat 8 and overcomes the lack of extensive ground-
reference data. We demonstrate the effectiveness of our methodology, which is implemented in Google Earth
Engine, through the development of accurate 30 m resolution maps that characterize built-up land cover in three
geographically diverse countries: India, Mexico, and the US. Our approach highlights the usefulness of data
fusion techniques for studying the built environment and is a first step towards the creation of an accurate
global-scale map of urban land cover over time.

1. Introduction

Urbanization has been a fundamental trend of the past two centuries
and a key force shaping the development of the modern world. Between
1950 and 2014, the share of the global population living in urban areas
increased from 30% to 54%, and in the next few decades is projected to
expand by an additional 2.5 billion urban dwellers, primarily in Asia
and Africa (Seto et al., 2011; UN, 2014). Urban population growth is
accompanied by a dramatic increase in the land area incorporated in
cities (Seto et al., 2011). While urbanization in rapidly growing nations
is helping lift hundreds of millions of people out of poverty, it is also
creating immense societal challenges by increasing greenhouse-gas
emissions, destabilizing fragile ecosystems, and creating new demands
on public services and infrastructure that impose significant burdens on
the environment (Ban et al., 2015). Timely and reliable information on
the extent of urban areas is fundamental for the support of sustainable
urban development and management (Ban et al., 2015; Jacob and Ban,
2015). Despite the importance of understanding the drivers of urban
growth, we are still unable to quantify the magnitude and pace of

urbanization in a consistent manner at high resolution and global scale
(Ban et al., 2015; Giri et al., 2013).

The revolution in geospatial data has transformed how we study
cities. Previous approaches leveraged household surveys but these are
expensive to collect, produced infrequently, and subject to measure-
ment problems. Since the 1970s, however, terrestrial Earth-observation
data have been continuously collected in various spectral, spatial and
temporal resolutions. As improved satellite imagery becomes available,
new remote-sensing methods and machine-learning approaches have
been developed to convert terrestrial Earth-observation data into
meaningful information about the nature and pace of change of urban
landscapes and human settlements (Ban et al., 2015; Chen et al., 2015;
CIESIN, 2005; Gaughan et al., 2013; Pesaresi et al., 2016; Potere et al.,
2009; Seto et al., 2011; Taubenböck et al., 2012).

The availability of satellite data has triggered the development of
new methods to map global land cover using remotely-sensed data such
as Landsat (Chen et al., 2015; Gaughan et al., 2013; Goldblatt et al.,
2016; Patel et al., 2015), MODIS (Moderate Resolution Imaging Spec-
troradiometer) (Schneider et al., 2009, 2010; Wan et al., 2015), DMSP-
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OLS (Elvidge et al., 2014; Liu et al., 2012; Xiao et al., 2014; Zhang and
Seto, 2013) and other spaceborne High-Resolution (HR), Very-High-
Resolution (VHR) and Synthetic-aperture radar (SAR) radar sensors
(Ban et al., 2015; Gamba et al., 2011; Jacob and Ban, 2015). Recent
studies have developed automated and semi-automated classification
procedures to map global land cover at a 30 m resolution with high
accuracy (Ban et al., 2015; Chen et al., 2015). Because Landsat satellites
have been collecting data from Earth since 1972, Landsat data are often
used for analysis of urban change (Patel et al., 2015), and are ideal for
land cover mapping (Woodcock et al., 2008). Nighttime light data are
also associated with developed land (Elvidge et al., 2014; Levin and
Duke, 2012; Sutton, 2003) and can be used to infer the extent of urban
areas (Bagan and Yamagata, 2015; Small and Elvidge, 2013; Zhang and
Seto, 2013), as well as economic activity at the local, regional and
national levels (Elvidge et al., 2014; Henderson et al., 2003; Keola et al.,
2015). Sensors on board the Operational Line-scan System of the De-
fense Meteorological Satellite Program (DMSP-OLS) have captured ar-
tificial lighting since the early 1990's. A pixel's nighttime light value
that exceeds a specified threshold, which may vary across regions or
countries, signifies urban development (Henderson et al., 2003; Liu
et al., 2016; Small and Elvidge, 2013; Su et al., 2015; Wei et al., 2014;
Zhou et al., 2014, 2015). However, inference using nighttime-light data
are often inaccurate, particularly in low-density urban areas (Zhang and
Seto, 2013). DMSP-OLS can also exaggerate the extent of urban areas
(Henderson et al., 2003; Small et al., 2005), while overlooking small or
developing settlements. In addition, the extent and intensity of lit areas
cannot directly delimit urban regions due to the “blooming” effect
(Imhoff et al., 1997) and “saturation” of pixels (Hsu et al., 2015).
Blooming refers to the identification of lit areas as consistently larger
than the settlements with which they are associated (Small et al., 2005);
saturation occurs when pixels in bright areas, such as in city centers,
reach the highest possible digital number (DN) value (i.e., 63) and no
further details can be recognized (Hsu et al., 2015).

Until recently, most remote sensing studies focused on local settings
(Herold, 2009). Mapping land cover at a national or regional scale is
challenging because of the lack of high-resolution global imagery, the
heterogeneous and complex spectral characteristics of land, and the
small and fragmented spatial configuration of many cities (Chen et al.,
2015; Herold, 2009). In the case of mapping urbanization, existing
maps of urban land show considerable disagreement on the location
and extent of urbanization (Potere et al., 2009; Seto et al., 2011) and
are limited across space and time. These inconsistencies arise in part
because the delineation of urban land depends on the input data
(Schneider et al., 2010), which may capture different dimensions of
urbanization, such as built-up land cover or land use and population
density (Bagan and Yamagata, 2014; Stevens et al., 2015; Tatem et al.,
2007).

1.1. Detecting urbanization using machine learning

Urban areas can be detected in satellite imagery using various ma-
chine-learning approaches (e.g., supervised, unsupervised and semi-
supervised). These approaches typically rely on reference data that
mark urban features, either for training or validation. Reference data
are fundamental not only for mapping urbanization across space, but
also for classification over time (Boucher and Seto, 2009). Some of the
reference datasets used for classification include Landsat-based urban
maps (Potere et al., 2009), census-based population databases (Stevens
et al., 2015), hand-labeled examples (Goldblatt et al., 2016), and data
collected via crowd-source platforms, such as OpenStreetMap (OSM)
(Belgiu and Drǎguţ, 2014; Estima and Painho, 2015). However, because
they are expensive to collect, reference datasets for large geographic
scales are scarce (Miyazaki et al., 2011). Due to the scarcity of ground-
reference data, it is often necessary to exploit existing global coarse
datasets and classification products to create accurate higher-resolution
maps of urban areas (Kasimu et al., 2009; Trianni et al., 2015).

Moreover, mapping land cover at a global scale and with high precision
requires effective, efficient and operational approaches to deal with a
very large volume of data. For example, it is estimated that over 10,000
Landsat satellite images are required to cover the entire Earth at 30 m
resolution (Chen et al., 2015). Until recently, the majority of studies
that analyze urbanization have been limited in their geographic scale
because of the lack of extensive high-resolution satellite data, scarcity
of ground-reference data, and computational constraints. Emerging
cloud-based computational platforms now allow for scaling analysis
across space and time. Google Earth Engine (GEE) is one platform that
leverages cloud-computing services to achieve planetary-scale utility.
GEE has been previously used to map population (Patel et al., 2015;
Trianni et al., 2015), urban areas (Goldblatt et al., 2016), and surface
water (Pekel et al., 2016). This paper contributes to this literature by
developing a machine-learning methodology for supervised high-re-
solution image classification of built-up areas using GEE's cloud-based
computational platform.

1.2. Research objective and contribution

The use of nighttime remotely-sensed data to map urbanization is
not new to the literature. Remotely-sensed data on artificial lighting has
long been considered an economical way to map urbanization and
development across the globe (Elvidge et al., 2009). By utilizing the
distribution of vegetation land cover, the combination of nighttime and
daytime data increases the heterogeneity of urban and suburban land
cover (e.g., distinguishing between built-up land cover and vegetation
in urban areas) and improves the characterization of inter-urban
variability in nighttime luminosity (Zhang et al., 2013). This, in turn,
improves the ability to detect urban features (Lu et al., 2008; Ma et al.,
2014) including sub-pixel fractional urban land cover (Huang et al.,
2016). Several spectral indices that combine nighttime light and ve-
getation spectral characteristics have been developed, including the
Vegetation Adjusted NTL Urban Index (VANUI) (Jing et al., 2015;
Zhang et al., 2013), the Normalized Difference Urban Index (NDUI)
(Zhang et al., 2015) and the Normalized Difference Spectral Vector
(NDSV) (Trianni et al., 2015). These indices increase the separability
between urban and non-urban land cover.

We develop a methodology that combines nighttime and daytime
remotely-sensed data. We collect training examples automatically using
DMSP-OLS data, and use them for classification of built-up areas with
daytime Landsat 30 m spatial resolution imagery. Previous studies that
combine nighttime and daytime data have either been limited in their
spatial application (i.e., the ability to generalize the method and to
apply it over regions with heterogeneous land cover) or spatial re-
solution (i.e., many of the existing approaches, for example those that
rely on MODIS or DMSP-OLS, are limited in their spatial resolution). In
this study, we adopt a hexagonal tessellation mapping approach to
handle large variation across regions (where we refer to each hexagon
in the hexagonal grid as a hex-cell). We collect training examples from
each hex-cell and classify the hex-cell as an independent unit of ana-
lysis.

Our methodology can be applied across heterogeneous land cover
and across time and, crucially, does not rely on expensive hand-labeled
examples. It requires minimal manual adjustments for training and
classification, and does not require adjustments to local parameters.
This feature makes the approach scalable across space and time.
Importantly, the methodology is time-invariant and can be applied
whenever Landsat and DMSP-OLS data are coincident. The robustness
of the methodology lies in our approach to sample training examples
(i.e., according to the relative intensity of the emitted light at night and
the distribution of vegetation land cover) and on the per-hex-cell
classification, which allows us to account for regional variations in the
land cover. Finally, we assess the accuracy of the methodology using an
extensive dataset of 84,564 hand-labeled polygons characterizing built-
up (BU) and not built-up (NBU) pixels for each of the three study areas,
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