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ARTICLE INFO ABSTRACT

Keywords: Sentinel-2 and Sentinel-3 are two newly launched satellites for global monitoring. The Sentinel-2 Multispectral
Sentinel-2 Imager (MSI) and Sentinel-3 Ocean and Land Colour Instrument (OLCI) sensors have very different spatial and
Senﬁnel'?" temporal resolutions (Sentinel-2 MSI sensor 10 m, 20 m and 60 m, 10 days, albeit 5 days with 2 sensors, con-
g‘)ﬁf;i:;‘zg ditional upon clear skies; Sentinel-3 OLCI sensor 300 m, < 1.4 days with 2 sensors). For local monitoring (e.g.,

the growing cycle of plants) one either has the desired spatial or temporal resolution, but not both. In this paper,
spatio-temporal fusion is considered to fuse Sentinel-2 with Sentinel-3 images to create nearly daily Sentinel-2
images. A challenging issue in spatio-temporal fusion is that there can be very few cloud-free fine spatial re-
solution images temporally close to the prediction time, or even available, strong temporal (i.e., seasonal)
changes may exist. To this end, a three-step method consisting of regression model fitting (RM fitting), spatial
filtering (SF) and residual compensation (RC) is proposed, which is abbreviated as Fit-FC. The Fit-FC method can
be performed using only one Sentinel-3-Sentinel-2 pair and is advantageous for cases involving strong temporal
changes (i.e., mathematically, the correlation between the two Sentinel-3 images is small). The effectiveness of
the method was validated using two datasets. The created nearly daily Sentinel-2 time-series images have great

potential for timely monitoring of highly dynamic environmental, agricultural or ecological phenomena.

1. Introduction

Sentinel-2 is a new program of the European Space Agency (ESA) for
fine spatial resolution global monitoring (Drusch et al., 2012; Hagolle
et al., 2015; Segl et al., 2015). The Sentinel-2A and -2B satellites were
launched on 23 June 2015 and 7 March 2017, respectively. The twin
satellites are in the same orbit and 180° apart from each other and they
are now releasing data routinely. The Sentinel-2 Multispectral Imager
(MSI) provides 13 spectral bands in the visible, near infrared (NIR) and
short wave infrared (SWIR) wavelengths, with four bands at 10 m
(centered at 490 nm, 560 nm, 665 nm and 842 nm), six bands at 20 m
(centered at 705 nm, 740 nm, 783 nm 865 nm, 1610 nm, and 2190 nm)
and three bands at 60 m spatial resolution (centered at 443 nm, 940 nm
and 1375 nm) (Drusch et al., 2012; Du et al., 2016; Hagolle et al., 2015;
Wang et al., 2016). The Sentinel-2 data can be used to support global
land services including monitoring vegetation, soil and water cover, etc.
Such data are receiving increasing attention in remote sensing studies
and applications (Ferndndez-Manso et al., 2016; Immitzer et al., 2016;
Novelli et al., 2016; Storey et al., 2016; Van der Werff and Van der
Meer, 2016). The Sentinel-2A or -2B satellite can revisit the same area

every 10 days (5 days with the twin satellites together). Due to cloud
and shadow contamination, however, it generally requires > 5 days
(e.g., probably several months) to acquire a cloud-free Sentinel-2 image
for specific areas. The temporally sparse Sentinel-2 observations,
especially for areas that can be easily covered by clouds, are not suf-
ficient for monitoring rapid changes such as growing cycle of plants.
Sentinel-3, another very new program of the ESA, is a satellite
imaging mission designed for global monitoring for environment and
security (GMES) to ensure frequent and near real-time measurements to
ocean, land, and atmospheric services (Berger and Aschbacher, 2012;
Donlon et al., 2012; Verhoef and Bach, 2012). The Sentinel-3A satellite
was launched on 16 February 2016. The instrument of the satellite
includes a Sea and Land Surface Temperature Radiometer (SLSTR), a
Synthetic Aperture Radar Altimeter (SRAL) and an Ocean and Land
Colour Imager (OLCI). The OLCI sensor delivers 21-band wide-swath
optical images at a temporal resolution of < 2.8 days (will be increased
to < 1.4 days after the launch of the twin satellite Sentinel-3B). Com-
pared to Sentinel-2 MSI, Sentinel-3 OLCI can provide data more fre-
quently for timely monitoring. However, the Sentinel-3 OLC images are
at a much coarser spatial resolution of 300 m. Such a spatial resolution
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Table 1
The corresponding bands for Sentinel-2 MSI and Sentinel-3 OLCI images.

Sentinel-2 Sentinel-3
Band number Wavelength  Spatial Band Wavelength  Spatial
(nm) resolution  number (nm) resolution
(m) (m)

2 (blue) 458-523 10 Oa4 437-447 300
(blue)

3 (green) 543-578 10 Oab 555-565 300
(green)

4 (red) 650-680 10 Oa8 660-670 300
(red)

8a (NIR) 855-875 20 Oal7 855-875 300
(NIR)

is too coarse to provide sufficient detail for local areas of interest.

There is a great need for data that have simultaneously the spatial
resolution of Sentinel-2 (10 m) and temporal resolution of Sentinel-3
(i.e., nearly daily Sentinel-2 time-series) to provide more informative
data and support a wider range of monitoring applications, particularly
for areas where the amount of available effective Sentinel-2 observa-
tions is limited due to cloud contamination. The daily Sentinel-2 images
have great value for dynamic monitoring of rapid changes on the
Earth's surface at a required fine spatial resolution, such as timely crop
monitoring (Gao et al., 2017). Both Sentinel-2 MSI and Sentinel-3 OLCI
data are freely available to users and have global coverage. Further-
more, the two sensors have the similar wavelengths for four bands (i.e.,
blue, green, red and NIR bands), as shown in Table 1. In our previous
study Wang et al. (2016), an accurate method based on area-to-point
regression kriging (ATPRK) (Wang et al., 2015) was used to fuse the
20 m Sentinel-2 8a band with 10 m bands 2, 3, 4 and 8 to produce 10 m
Sentinel-2 8a. This provides an excellent opportunity for spatio-tem-
poral fusion of 10 m Sentinel-2 MSI and 300 m Sentinel-3 OLCI data to
create 10 m, daily Sentinel-2 images. With this process, the number of
cloud-free Sentinel-2 images, as well as the temporal resolution, can be
maximized.

Spatio-temporal fusion approaches have been developed for
blending fine spatial resolution, but coarse temporal resolution Landsat
and fine temporal resolution, but coarse spatial resolution Moderate
Resolution Imaging Spectroradiometer (MODIS) or MEdium Resolution
Imaging Spectrometer (MERIS) images to create fine spatio-temporal
resolution images (Gao et al., 2015; Zhang et al., 2015; Chen et al.,
2015). The implementation requires at least one coarse-fine spatial
resolution image pair (e.g., MODIS-Landsat image pair acquired on the
same day) or one fine spatial resolution image (hereafter called fine
image) that is temporally close to the prediction day. In recent years,
several spatio-temporal fusion approaches have been developed. The
spatial and temporal adaptive reflectance fusion model (STARFM) is
one of the earliest and most widely used spatio-temporal fusion ap-
proaches (Gao et al., 2006). Appreciating its simple implementation, it
has been used to support various applications, such as forest mon-
itoring, crop monitoring (Gao et al., 2015; Gao et al., 2017), leaf area
index (LAI) monitoring (Dong et al., 2016; Houborg et al., 2016), land
surface temperature (LST) monitoring (Shen et al., 2016) and gross
primary productivity (GPP) monitoring (Singh, 2011). STARFM is
performed based on the availability of at least one image-pair. It as-
sumes that the temporal changes of all classes within a coarse pixel are
uniform, which is more suitable for homogeneous landscape dominated
by pure coarse pixels. To enhance the performance of STARFM for
heterogeneous landscapes dominated by mixed pixels, an enhanced
STARFM (ESTARFM) method was developed (Zhu et al., 2010). Based
on the availability of two coarse-fine image pairs, ESTARFM estimates
the temporal change rate of each class separately and assumes the
change rates to be stable during a period (Emelyanova et al., 2013).
STARFM was also extended for timely monitoring of forest disturbance
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based on a version termed spatial temporal adaptive algorithm for
mapping reflectance change (STAARCH) (Hilker et al., 2009). Based on
the mechanism of machine learning, some learning-based methods
were proposed, including sparse representation (Huang and Song,
2012; Song and Huang, 2013), extreme learning machine (Liu et al.,
2016), artificial neural network and support vector regression (Moosavi
et al., 2015), and deep learning (Das and Ghosh, 2016). This type of
method learns the relationship between the available coarse-fine image
pairs, which is used to guide the prediction of fine images from coarse
images on other days.

Alternatively, spatial unmixing is a type of spatio-temporal fusion
approach that can be performed using one fine image. More precisely, it
requires a fine spatial resolution thematic map that can be derived by
interpretation of the available fine spatial resolution data (Amords-
Lopez et al., 2011, 2013; Gevaert and Garcia-Haro, 2015; Zurita-Milla
et al., 2008) or from other sources including an aerial image (Mustafa
et al., 2014), or land-use database (Zurita-Milla et al., 2009). Different
from spectral unmixing which estimates for which the class proportions
within coarse pixels and where the class endmembers (spectra) are
known, spatial unmixing estimates the class endmembers within coarse
pixels and the class proportions are known (calculated by upscaling the
fine spatial resolution thematic map) (Busetto et al., 2008; Maselli,
2001; Zhukov et al., 1999). Spatial unmixing assumes that no land-
cover/land-use changes occur during the period of interest and the class
proportions are constant for coarse images at different times. This ap-
proach was used to create 30 m Landsat-like time-series from 300 m
MERIS images using a 30 m thematic map obtained by classification of
an available Landsat image (Zurita-Milla et al., 2008) or a fine spatial
resolution land-use database LGN5 (Zurita-Milla et al., 2009). Wu et al.
(2012) extended spatial unmixing to cases with one coarse-fine image
pair available and proposed a surface reflectance calculation model
(SRCM). SRCM performs unmixing separately for two coarse images
and estimates the temporal changes of each endmember spectra and
finally adds the changes to the known fine image. Similarly to the idea
of SRCM, Gevaert and Garcia-Haro (2015) performed unmixing directly
for the residual image (defined as the difference between two coarse
images) to estimate the changes of endmember spectra. Huang and
Zhang (2014) developed an unmixing-based spatio-temporal re-
flectance fusion model (U-STFM) using two coarse-fine image pairs. The
spatial unmixing approach can also be combined with STARFM and
some hybrid methods were developed (Xu et al., 2015; Xie et al., 2016;
Zhu et al., 2016).

For spatio-temporal fusion in practice, one challenging problem is
that sometimes very few fine images (Sentinel-2 image in this paper)
that are temporally close to the prediction time are available for use,
due to cloud and shadow contamination. Another problem is that even
where one fine image is available, strong temporal changes may have
occurred from the time of the fine image to prediction. This means that
the observations at two times may be very different and do not have a
strong correlation. This is exacerbated for the fusion of 10 m Sentinel-2
MSI and 300 m Sentinel-3 OLCI images, which involves a large zoom
factor of 30 (double of that from 500 m MODIS to 30 m Landsat spatial
resolution) and a number of mixed pixels. In this case, the available fine
image on one day may be very different to the ideal prediction on an-
other day. Thus, how to make full use of the available fine image is a
critical issue. The U-STFM (Huang and Zhang, 2014) and flexible spa-
tiotemporal data fusion (FSDAF) (Zhu et al., 2016) methods were de-
veloped to deal with strong temporal changes. However, U-STFM re-
quires at least two coarse-fine image pairs. Although FSDAF requires
only one image pair, its performance may sometimes be compromised
by the unmixing process where a global, linear unmixing model is
considered.

In this paper, to cope with the abovementioned problems, we pro-
pose a new method for fusion of Sentinel-2 MSI and Sentinel-3 OLCI
images. The new method consists of three stages, including regression
model fitting (RM fitting, hereafter called RM), spatial filtering (SF) and
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