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A B S T R A C T

A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to
March 2017 with a 2–3 day repeat frequency using passive microwave observations from the Soil Moisture
Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System
Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based
vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates
consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without
further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean
square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m3m−3, 0.70 and
0.66, respectively, against SMAP core validation site measurements and 0.026 m3m−3, 0.58 and 0.48, respec-
tively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN
retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill
than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE
compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals
were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A
triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced
Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar
spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition
zones.

1. Introduction

Soil moisture is a key variable for many surface and boundary layer
processes, such as the coupling of the water and energy cycles

(Seneviratne et al., 2006; Gentine et al., 2011; Bateni and Entekhabi,
2012) or the partitioning of precipitation into runoff and infiltration
(Philip, 1957, Corradini et al., 1998, Assouline, 2013). Soil moisture is
also a key determinant of the carbon cycle (McDowell, 2011; Sevanto
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et al., 2014; Jung et al., 2017). The importance of soil moisture has
been recognized by the World Meteorological Organization by naming
it an Essential Climate Variable (GCOS, 2009) and thus encouraging
efforts to obtain better soil moisture observations, which is challenging
because of its high variability both in space and time.

One avenue to obtain observations of soil moisture is through sa-
tellite instruments that provide global observations with a relatively
short revisit period of 2–3 days. In particular, L-band (1.4 GHz) mi-
crowave instruments exhibit a high sensitivity to soil moisture in the
top ∼5 cm of the soil in sparsely to moderately vegetated areas. This
has led to the launch of two L-band satellite missions to observe soil
moisture, the European Soil Moisture and Ocean Salinity (SMOS) mis-
sion in 2009 (Kerr et al., 2010) and the NASA Soil Moisture Active
Passive (SMAP) mission (Entekhabi et al., 2010) in 2015.

Traditionally, satellite soil moisture retrievals from L-band (and
other) sensors are implemented through the inversion of Radiative
Transfer Models (RTMs) (e.g. Owe et al., 2001; Kerr et al., 2012; O’Neill
et al., 2015), which explicitly formulate the physical relationships
linking surface soil moisture to satellite brightness temperature ob-
servations. The RTM inversion technique is used to produce the official
SMOS and SMAP retrieval products, and is able to provide high quality
soil moisture estimates (Al Bitar et al., 2012; Chan et al., 2016b;
Colliander et al., 2017) with a typical latency of 12 to 24 h. However,
this approach requires accurate knowledge of the physical relationships
between the surface state and the satellite observations as well as their
associated parameters, which are often empirically estimated and thus
uncertain. Moreover, RTM inversions also require explicit information
on other surface states, including surface soil temperature and vegeta-
tion, and are thus typically ill-posed problems. Additionally, for time
critical applications, such as near real time flood prediction or soil
moisture assimilation into weather prediction models, retrieval pro-
ducts with a shorter latency are required.

Data assimilation provides another option to generate improved soil
moisture estimates through the merging of satellite and model in-
formation, and can yield soil moisture estimates that are of higher
quality than estimates from satellite observations or models alone (e.g.
Entekhabi et al., 1994; Walker and Houser, 2001; Liu et al., 2011; Lahoz
and De Lannoy, 2014). For soil moisture assimilation, the observations
and model estimates have to be unbiased with respect to each other,
which is typically achieved by locally matching the mean and varia-
bility of the satellite observations to those of the model (Reichle and
Koster, 2004). While this satisfies the requirements of the assimilation
system, it has the side effect of removing some independent information
in the satellite observations. Given the high quality of soil moisture
observations from SMOS and SMAP this is undesirable.

As an alternative to RTM inversions, statistical Neural Network
(NN) retrieval algorithms have been successfully implemented for a
number of sensors in recent years (Aires et al., 2005; Chai et al., 2009;
Kolassa et al., 2013, 2016; Rodríguez-Fernández et al., 2015; Santi
et al., 2016). Instead of explicitly formulating physical relationships,
NNs are calibrated on a sample of satellite observations and corre-
sponding soil moisture estimates (the target data) to model the global
statistical relationship between the satellite observations and surface
soil moisture. As a result, NN retrievals can offer several general ad-
vantages over traditional RTM inversions. First, they do not require an
explicit parameterization of physical relationships and are thus not
affected by errors in our knowledge of these relationships or their
parameters. Second, after a one-time calibration, NNs are computa-
tionally extremely efficient and can provide soil moisture estimates
almost immediately after arrival of the instrument data, thereby
shortening the latency. Third, training a NN non-locally on target data
from a model, yields NN retrievals that are globally unbiased with re-
spect to the model, with spatial and temporal patterns that are driven
by the satellite observations (e.g. Alemohammad et al. (2017), Jimenez
et al. (2013), Kolassa et al. (2016)). This may reduce the need for bias
correction prior to an assimilation and at the same time retain more of

the independent information contained in the spatial and temporal
patterns of the satellite observations.

In this study, we develop the first NN algorithm to retrieve global
surface soil moisture from SMAP observations. The motivation for this
work is twofold. First, we investigate statistical retrieval techniques as a
possible alternative or supplement to the existing physically-based
SMAP retrieval algorithms. Since statistical techniques require less
ancillary data and are subject to different algorithm-related errors than
physically-based retrievals, NN retrievals may provide useful informa-
tion where and when RTMs are known to be uncertain. For SMOS, the
NN technique has been successfully implemented (Rodríguez-
Fernández et al., 2015). However, it is not obvious that a NN for SMAP
will work equally well, given the differences between SMOS and SMAP
in the observing geometry (multiple vs. single incidence angle) and
instrument error characteristics (De Lannoy et al., 2015). Second, we
aim to investigate the potential of statistical techniques to generate a
soil moisture product with characteristics beneficial to SMAP soil
moisture assimilation. The NN algorithm retrieves soil moisture in the
climatology of the target model and thus may reduce the need for bias
correction prior to data assimilation. In a follow-on study, we will in-
vestigate whether this results in a more efficient use of SMAP ob-
servations during data assimilation.

The NN retrieval algorithm is trained with SMAP brightness tem-
peratures and two ancillary datasets as inputs, and with target data
from the NASA Goddard Earth Observing System version 5 (GEOS-5)
model (Section 2). Using the trained NN, we compute global estimates
of volumetric surface soil moisture for the period April 2015 to March
2017 and evaluate them using a number of different metrics and
techniques (Section 3). We compare the SMAP NN soil moisture esti-
mates to the target GEOS-5 model soil moisture to identify the in-
dependent information provided by the SMAP observations that can
potentially inform the model during data assimilation (Section 4.1).
Next, we assess the SMAP NN retrievals against independent in situ
measurements and compare their skill to that of the SMAP Level-2
passive (L2P) retrieval product and the GEOS-5 model soil moisture
(Section 4.2). Finally, we assess the global error distributions of the
SMAP NN, GEOS-5 and SMAP L2P products using a triple collocation
(TC) analysis in conjunction with soil moisture retrievals based on
observations from the Advanced Microwave Scanning Radiometer 2
(AMSR2) and the Advanced Scatterometer (ASCAT), which have in-
dependent errors with respect to the SMAP and GEOS-5 products
(Section 4.3).

2. Datasets

2.1. Neural Network inputs and target datasets

2.1.1. SMAP observations
The main input to the NN soil moisture retrieval algorithm are the

SMAP brightness temperatures. SMAP was launched in January 2015
and is equipped with an L-band (1.4 GHz) radiometer observing on four
different channels, horizontal and vertical polarization as well as the
3rd and 4th Stokes' parameter. SMAP is in a sun-synchronous, near-
circular orbit with equator crossings at 6 AM and 6 PM local time and a
revisit time of 2–3 days (Entekhabi et al., 2010). Brightness tempera-
ture data have been collected since 31 March 2015.

For our NN retrieval product we use SMAP Level-1C brightness
temperatures (Chan et al., 2016) for the April 2015 to March 2017
period. The data are provided on the 36-km resolution Equal-Area
Scalable Earth version 2 (EASEv2) grid (Brodzik et al., 2012) as daily
half-orbit files. We only use observations from the 6 AM overpass, in
order to minimize observation errors due to Faraday rotation and the
difference between the soil and canopy temperatures (Entekhabi et al.,
2010; O’Neill et al., 2015). A test of different input combinations in-
dicated that using data from all four SMAP channels as inputs to the
retrieval algorithm yielded the best NN retrieval performance (not
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